BLM 3-5

Section 3.3 Extra Practice

- 1. What is the corresponding binomial factor of a polynomial P(x) given the value of the zero?
 - **a**) P(6) = 0

b)
$$P(-7) = 0$$

- **c**) P(2) = 0
- **d**) P(-5) = 0
- 2. Determine whether x 1 is a factor of each polynomial.
 - **a)** $-4x^4 3x^3 + 2x^2 x + 5$ **b)** $7x^5 + 5x^4 + 23x^2 + 8$ **c)** $2x^4 - 3x^3 - 5x^2 + 6x - 1$

d)
$$2x^3 + 5x^2 - 7$$

3. State whether each polynomial has x + 2 as a factor.

a)
$$-3x^3 + 2x^2 + 10x + 5$$

b) $5x^2 + 6x - 8$
c) $2x^4 - 3x^3 - 5x^2$
d) $3x^3 - 12x - 2$

- **4.** What are the possible integral zeros of each polynomial?
 - a) $P(n) = n^3 2n^2 5n + 12$ b) $P(p) = p^4 - 3p^3 - p^2 + 7p - 6$ c) $P(z) = z^4 + 4z^3 + 3z^2 + 8z - 25$ d) $P(y) = y^4 - 11y^3 - 2y^2 + 2y + 10$
- 5. The factors of a polynomial are x + 3, x 4, and x + 1. Describe how the

zeros of the polynomial expression could be used to determine the zeros of the corresponding function.

- 6. Factor completely.
 - a) $x^3 + 2x^2 13x + 10$ b) $x^4 - 7x^3 + 3x^2 + 63x - 108$ c) $x^3 - x^2 - 26x - 24$ d) $x^4 - 26x^2 + 25$
- 7. Factor completely.
 - a) $x^3 + x^2 16x 16$ b) $x^3 - 2x^2 - 6x - 8$ c) $k^3 + 6k^2 - 7k - 60$ d) $x^3 - 27x + 10$
- 8. Factor completely.

a) $x^4 + 4x^3 - 7x^2 - 34x - 24$ **b)** $x^5 + 3x^4 - 5x^3 - 15x^2 + 4x + 12$

9. Determine the value(s) of *k* so that the binomial is a factor of the polynomial.

a) $x^2 - 8x - 20$, x + kb) $x^2 - 3x - k$, x - 7

10. Each polynomial has a factor of x - 3. What is the value of k in each case?

a)
$$kx^3 - 10x^2 + 2x + 3$$

b) $4x^4 - 3x^3 - 2x^2 + kx - 9$

Date: _____

BLM 2-1

(continued)

BLM 3-6

Name: _____

Date: _____

Section 3.4 Extra Practice

1. Solve.

a) (x+5)(x+2)(x-3)(x-6) = 0b) $x^3 - 27 = 0$ c) (3x+1)(x-4)(x-7) = 0d) $x(x+4)^3(x+2)^2 = 0$

2. For this graph, identify the following:

a) the zeros

- **b**) the intervals where the function is positive
- c) the intervals where the function is negative
- **3.** For the graph of this polynomial function, determine the following:

a) the least possible degree

- **b**) the sign of the leading coefficient
- c) the *x*-intercepts and the factors of the function
- **d**) the intervals where the function is positive and the intervals where it is negative
- 4. The graph of $y = x^3$ is transformed to obtain the graph of $y = -2(4(x + 1))^3 - 5$. Copy and complete the table.

$y = x^3$	$y = (4x)^3$	$y = -2(4x)^3$	$y = -2(4(x+1))^3 - 5$
(-2, -8)			
(-1, -1)			
(0, 0)			
(1, 1)			
(2, 8)			

5. The graph of $y = x^4$ is transformed to obtain the graph of $y = \frac{1}{4} \left(\frac{1}{2} (x-9) \right)^4 + 3$. Copy

and complete the table.

$y = x^4$	$y = \left(\frac{1}{2}x\right)^4$	$y = \frac{1}{4} \left(\frac{1}{2}x\right)^4$	$y = \frac{1}{4} \left(\frac{1}{2} (x - 9) \right)^4 + 3$
(-2, -16)			
(-1, 1)			
(0, 0)			
(1, 1)			
(2, 16)			

BLM 2–1 (continued)

Name:	Date:

6. For the graph of this polynomial function, determine the following:

- **a**) the least possible degree
- **b**) the sign of the leading coefficient
- **c**) the *x*-intercepts and the factors of the function
- **d**) the intervals where the function is positive and the intervals where it is negative
- **7.** Without using a graphing calculator, determine the following for

$$y = x^3 + 4x^2 - x - 4$$

- **a**) the zeros of the function
- **b**) the degree and end behaviour of the function
- **c**) the *y*-intercept
- **d**) the intervals where the function is positive and the intervals where it is negative

BLM 2–1 (continued)

8. Sketch a graph of each function without using technology. Label all intercepts.

a)
$$y = x^3 - 4x^2 - 5x$$

b) $f(x) = -x^4 + 19x^2 + 6x - 72$
c) $g(x) = x^5 - 14x^4 + 69x^3 - 140x^2 + 100x$

- **9.** Determine the equation with least degree for each polynomial function.
 - a) a cubic function with zeros
 3 (multiplicity 2) and -1, and
 y-intercept = 18
 - **b**) a quintic function with zeros -2 (multiplicity 3) and 4 (multiplicity 2), and *y*-intercept = -32
 - c) a quartic function with zeros -1 (multiplicity 2) and 5 (multiplicity 2), and y-intercept = -10
- 10. Determine three consecutive integers with a product of -504.
- **11.** A toothpaste box has square ends. The length of the box is 12 cm greater than the width. The volume is 135 cm³. What are the dimensions of the box?
- **12.** The dimensions of a rectangular prism are 10 cm by 10 cm by 5 cm. When each dimension is increased by the same length, the new volume is 1008 cm³. What are the dimensions of the new prism?

