\qquad
\qquad

BLM 3-5

Section 3.3 Extra Practice

1. What is the corresponding binomial factor of a polynomial $P(x)$ given the value of the zero?
a) $P(6)=0$
b) $P(-7)=0$
c) $P(2)=0$
d) $P(-5)=0$
2. Determine whether $x-1$ is a factor of each polynomial.
a) $-4 x^{4}-3 x^{3}+2 x^{2}-x+5$
b) $7 x^{5}+5 x^{4}+23 x^{2}+8$
c) $2 x^{4}-3 x^{3}-5 x^{2}+6 x-1$
d) $2 x^{3}+5 x^{2}-7$
3. State whether each polynomial has $x+2$ as a factor.
a) $-3 x^{3}+2 x^{2}+10 x+5$
b) $5 x^{2}+6 x-8$
c) $2 x^{4}-3 x^{3}-5 x^{2}$
d) $3 x^{3}-12 x-2$
4. What are the possible integral zeros of each polynomial?
a) $P(n)=n^{3}-2 n^{2}-5 n+12$
b) $P(p)=p^{4}-3 p^{3}-p^{2}+7 p-6$
c) $P(z)=z^{4}+4 z^{3}+3 z^{2}+8 z-25$
d) $P(y)=y^{4}-11 y^{3}-2 y^{2}+2 y+10$
5. The factors of a polynomial are $x+3, x-4$, and $x+1$. Describe how the
zeros of the polynomial expression could be used to determine the zeros of the corresponding function.
6. Factor completely.
a) $x^{3}+2 x^{2}-13 x+10$
b) $x^{4}-7 x^{3}+3 x^{2}+63 x-108$
c) $x^{3}-x^{2}-26 x-24$
d) $x^{4}-26 x^{2}+25$
7. Factor completely.
a) $x^{3}+x^{2}-16 x-16$
b) $x^{3}-2 x^{2}-6 x-8$
c) $k^{3}+6 k^{2}-7 k-60$
d) $x^{3}-27 x+10$
8. Factor completely.
a) $x^{4}+4 x^{3}-7 x^{2}-34 x-24$
b) $x^{5}+3 x^{4}-5 x^{3}-15 x^{2}+4 x+12$
9. Determine the value(s) of k so that the binomial is a factor of the polynomial.
a) $x^{2}-8 x-20, x+k$
b) $x^{2}-3 x-k, x-7$
10. Each polynomial has a factor of $x-3$. What is the value of k in each case?
a) $k x^{3}-10 x^{2}+2 x+3$
b) $4 x^{4}-3 x^{3}-2 x^{2}+k x-9$

Name: \qquad Date: \qquad

BLM 2-1 (continued)

Name: \qquad Date: \qquad

BLM 3-6

Section 3.4 Extra Practice

1. Solve.
a) $(x+5)(x+2)(x-3)(x-6)=0$
b) $x^{3}-27=0$
c) $(3 x+1)(x-4)(x-7)=0$
d) $x(x+4)^{3}(x+2)^{2}=0$
2. For this graph, identify the following:

a) the zeros
b) the intervals where the function is positive
c) the intervals where the function is negative
3. For the graph of this polynomial function, determine the following:

a) the least possible degree
b) the sign of the leading coefficient
c) the x-intercepts and the factors of the function
d) the intervals where the function is positive and the intervals where it is negative
4. The graph of $y=x^{3}$ is transformed to obtain the graph of $y=-2(4(x+1))^{3}-5$. Copy and complete the table.

$\boldsymbol{y}=\boldsymbol{x}^{\mathbf{3}}$	$\boldsymbol{y}=(\mathbf{4 x})^{\mathbf{3}}$	$\boldsymbol{y}=-\mathbf{2 (4 x})^{\mathbf{3}}$	$\boldsymbol{y}=-\mathbf{2 (4 (x + 1)) ^ { \mathbf { 3 } } - \mathbf { 5 }}$
$(-2,-8)$			
$(-1,-1)$			
$(0,0)$			
$(1,1)$			
$(2,8)$			

5. The graph of $y=x^{4}$ is transformed to obtain the graph of $y=\frac{1}{4}\left(\frac{1}{2}(x-9)\right)^{4}+3$. Copy and complete the table.

$y=x^{4}$	$y=\left(\frac{1}{2} x\right)^{4}$	$y=\frac{1}{4}\left(\frac{1}{2} x\right)^{4}$	$y=\frac{1}{4}\left(\frac{1}{2}(x-9)\right)^{4}+3$
$(-2,-16)$			
$(-1,1)$			
$(0,0)$			
$(1,1)$			
$(2,16)$			

Name: \qquad Date: \qquad

Name: \qquad Date: \qquad

BLM 3-6

(continued)
6. For the graph of this polynomial function, determine the following:

a) the least possible degree
b) the sign of the leading coefficient
c) the x-intercepts and the factors of the function
d) the intervals where the function is positive and the intervals where it is negative
7. Without using a graphing calculator, determine the following for $y=x^{3}+4 x^{2}-x-4$:
a) the zeros of the function
b) the degree and end behaviour of the function
c) the y-intercept
d) the intervals where the function is positive and the intervals where it is negative
\qquad
8. Sketch a graph of each function without using technology. Label all intercepts.
a) $y=x^{3}-4 x^{2}-5 x$
b) $f(x)=-x^{4}+19 x^{2}+6 x-72$
c) $g(x)=x^{5}-14 x^{4}+69 x^{3}-140 x^{2}+100 x$
9. Determine the equation with least degree for each polynomial function.
a) a cubic function with zeros

3 (multiplicity 2) and -1 , and y-intercept $=18$
b) a quintic function with zeros
-2 (multiplicity 3) and 4 (multiplicity 2), and y-intercept $=-32$
c) a quartic function with zeros
-1 (multiplicity 2) and 5 (multiplicity 2), and y-intercept $=-10$
10. Determine three consecutive integers with a product of -504 .
11. A toothpaste box has square ends. The length of the box is 12 cm greater than the width. The volume is $135 \mathrm{~cm}^{3}$. What are the dimensions of the box?
12. The dimensions of a rectangular prism are 10 cm by 10 cm by 5 cm . When each dimension is increased by the same length, the new volume is $1008 \mathrm{~cm}^{3}$. What are the dimensions of the new prism?

