Section 2.2 Extra Practice

1. Complete the table.

x	f(x)	$\sqrt{f(x)}$
-2	16	
-1	8	
0		2
1		1.4
2	1	

- 2. For each point given on the graph of y = f(x), does a corresponding point on the graph of $y = \sqrt{f(x)}$ exist? If so, state the coordinates to the nearest hundredth.
 - **a**) (9, 14) **b**) (*p*, *r*) **c**) (-2, 7) **d**) (-32, -1)
- **3.** For each function, graph $y = \sqrt{f(x)}$.
 - **a)** $f(x) = x^2 9$ **b)** $f(x) = -x^2 + 9$ **c)** $f(x) = x^2 + 9$
- **4.** a) Sketch the graph of f(x) = x + 4.
 - **b**) State the domain and range of y = f(x).
 - c) Sketch the graph of $y = \sqrt{f(x)}$.
 - **d**) State the domain and range of $y = \sqrt{f(x)}$.
- 5. For each function, graph $y = \sqrt{f(x)}$ and state the domain and range of $y = \sqrt{f(x)}$.
 - a) f(x) = x 4b) f(x) = x + 9c) f(x) = x - 9
- **6.** Determine the domains and ranges of each pair of functions. Explain why the domains and ranges differ.

a)
$$y = x + 5$$
, $y = \sqrt{x + 5}$
b) $y = 3x - 9$, $y = \sqrt{3x - 9}$
c) $y = -x - 10$, $y = \sqrt{-x - 10}$

7. Identify the domain and range of $y = \sqrt{f(x)}$. a) $f(x) = x^2 - 16$

b)
$$f(x) = x^2 + 5$$

c)
$$f(x) = 2x^2 + 18$$

8. Using the graph of y = f(x), sketch the graph of $y = \sqrt{f(x)}$.

BLM 2-4

- 9. a) Sketch the graphs of $y = x^2 + x 20$ and $y = \sqrt{x^2 + x - 20}$.
 - **b**) Why is the graph of $y = \sqrt{x^2 + x 20}$ undefined over an interval?
- **10.** a) Give examples of points on the graph of y = f(x) that would be invariant when graphing $y = \sqrt{f(x)}$.
 - **b)** Give examples of points on the graph of y = f(x) that would be undefined on the graph of $y = \sqrt{f(x)}$.

BLM 2-5

Section 2.3 Extra Practice

1. Solve each equation algebraically.

a)
$$\sqrt{x+1+3} = 5$$

b)
$$\sqrt{4-3x} = 2$$

c)
$$\sqrt{0.5(3x-2)+2}=1$$

d)
$$-3\sqrt{x+2} + 4 = 1$$

2. What function(s) would you graph to help you solve each radical equation?

a)
$$\sqrt{5x^2 + 11} = x + 5$$

b)
$$x + 3 = \sqrt{2x^2 - 7}$$

c)
$$\sqrt{13 - 4x^2} = 2 - x$$

d)
$$x + \sqrt{-2x^2 + 9} = 3$$

3. Use each graph to solve the equation f(x) = 0.

d)

- **4.** Solve each equation graphically.
 - **a**) $\sqrt{2x+1} = 3$

b)
$$\sqrt{x-3} + 6 = 2$$

$$c) \quad \sqrt{4(x+3)} = 6$$

d)
$$2\sqrt{x-1} - 2 = 8$$

5. Solve.

$$\mathbf{a)} \quad x - \sqrt{x+2} = 0$$

$$\mathbf{b}) \quad \sqrt{x+4} + 8 = x$$

c)
$$\sqrt{x-1+3-x} = 0$$

- **d**) $x = \sqrt{x+10} + 2$
- **6.** Solve to the nearest tenth.
 - **a**) $\sqrt{x-2} = x-3$
 - **b**) $\sqrt{x+1} + 5 = 2x$

c)
$$x\sqrt{3} + 4 = x$$

d) $\sqrt{x^2 - 4} = 2x - 10$

Name: _____

Date: _

- 7. Tanya says that the equation $\sqrt{1-x} + 2 = 0$ has no solutions.
 - a) Show that Tanya is correct, using both a graphical and an algebraic approach.
 - **b**) Is it possible to tell that this equation has no solutions simply by examining the equation? Explain.
- 8. The speed of a tsunami wave in the ocean is related to the depth of the water by the equation $s = 3\sqrt{d}$, where *s* is the speed of the wave, in metres per second, and *d* is the depth of the water, in metres. What is the depth of the water, to the nearest metre, if the speed of a tsunami wave is 10 m/s?
- 9. The radius, *r*, of a sphere is related to the surface area, *A*, by the equation $r = \frac{1}{2} \sqrt{\frac{A}{\pi}}$.

BLM 2–5 (continued)

- a) The surface area of a baseball is about 172 cm². Find the radius of a baseball, to the nearest tenth of a centimetre.
- b) The radius of a tennis ball is about 3.3 cm. Find the surface area, to the nearest square centimetre.
- 10. Solve.

$$\sqrt{x + \sqrt{x - 2}} = 2$$

