Section 7.3 Extra Practice

1. Solve each absolute value equation. Verify the solution.

a)
$$|x+1| = 2$$
 b) $|x-3| + 1 = 0$

c)
$$|2x| = 5$$
 d) $\left|\frac{x}{4}\right| = 0$

- 2. Determine whether x = 1 is a solution to each equation.
 - **a)** 2|x-5|=8
 - **b)** |3x 2| + 6 = 12
 - c) |-2x-3| = 5
 - **d)** 3|2x-2|=0
- **3.** Solve each absolute value equation algebraically.
 - **a)** |x-5| = 3x+4
 - **b)** |3m + 2| = m
 - **c)** |-x+5| = x-5
 - **d**) |2n| = 3n 8
- 4. Solve each equation.

a)
$$|x^2 - 2x| = 1$$

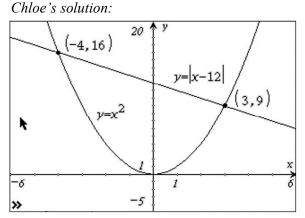
b) $|x^2 - 3x| = 4$
c) $8 = |0.5x^2 + 3x|$
d) $3 = |-4x^2 + 8x|$

- 5. Solve each absolute value equation.
 - a) $|4x| = x^2 5$ b) $2x^2 = |5x + 3|$ c) $|2(x - 4)^2 - 5| = 3$ d) $0 = |x^2 - 2x - 3| - 4$
- 6. Determine whether x = 2 is a solution to each equation.

a)
$$x + 1 = |x^2 - 1|$$

b) $|x^2 - 3x| = 3x - 8$
c) $2(x - 4)^2 - 6 = |0.5x + 1|$
d) $|x + 2| - 3 = -4x^2 + 8x + 5$

- 7. Given the equation $|x^2 4| = k$, determine the value of k for each situation.
 - a) There is one solution only.
 - **b**) There are two solutions.
 - c) There are three solutions.
 - d) There are four solutions.
- 8. Mark and Chloe each solve $|x 12| = x^2$. Mark solves the equation algebraically, while Chloe solves the equation graphically. Who is correct? Explain your reasoning.


Mark's solution:

$$|x-12| = x^{2}$$

 $x-12 = x^{2}$ or $-x+12 = x^{2}$
 $0 = x^{2} - x + 12$ $0 = x^{2}$

 $0 = x^{2} + x - 12$ 0 = (x - 4)(x + 3)x = 4 or x = -3

BLM 7-6

No solution

- 9. Evanka graphed the functions $f(x) = \frac{x}{2}$ and $g(x) = |-x^2 + 2|$ on the same set of axes.
 - a) How could she use the graph to

solve
$$\left| -x^2 + 2 \right| - \frac{x}{2} = 0$$
?

b) State the solution. Express the solution to the nearest hundredth.

Section 7.4 Extra Practice

1. For each function,

Name:

- i) write the reciprocal function
- **ii)** state the domain of the function and of its reciprocal function
- iii) state the range of the function and of its reciprocal function
- **a)** y = x + 4 **b)** y = 3x 9

c)
$$y = (x+2)(x-2)$$
 d) $y = x^2 + 6x + 9$

- 2. For each function,
 - i) state the zeros
 - ii) write the reciprocal function
 - iii) identify the non-permissible values of the corresponding rational expression

 - **a)** f(x) = 3 + x
 - **b)** g(x) = 2x 1
 - c) h(x) = (x+2)(x-3)
 - **d)** $j(x) = -2x^2 12x 10$
- **3.** State the equation(s) of the vertical asymptote(s) for each function.

a)
$$f(x) = \frac{1}{5-x}$$

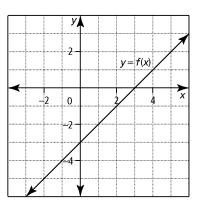
b) $g(x) = \frac{1}{7x-2}$
c) $h(x) = \frac{1}{(x+1)(2x+1)}$
d) $h(x) = \frac{1}{2x^2+2x-24}$

4. What are the *x*-intercepts and *y*-intercepts of each function?

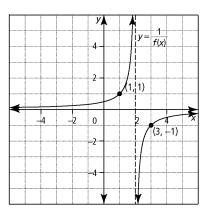
a)
$$y = \frac{1}{2x+5}$$

b) $y = \frac{1}{3-2x}$
c) $f(x) = \frac{1}{(2x+3)(x-1)}$

d)
$$g(x) = \frac{1}{x^2 + 7x + 12}$$


5. Sketch the graph of y = f(x) and the graph of $y = \frac{1}{f(x)}$ on the same set of axes. Label the asymptotes, the invariant points, and the

the asymptotes, the invariant points, and the intercepts. (2)


a)
$$f(x) = x + 2$$

b) $f(x) = 3x$
c) $f(x) = (x - 3)(x + 3)$
d) $f(x) = (x + 1)^2$

6. Copy the graph of y = f(x), and sketch the

graph of the reciprocal function, $y = \frac{1}{f(x)}$.

7. Copy the graph of $y = \frac{1}{f(x)}$, and sketch the graph of y = f(x).

