ANSWERS

Max # of solutions Min # of solutions

1a) 5 1
1b) 4 0
1c) 3 1
1d) 6 0

2a) yes
2b) no, \(\sqrt{-4} \) is an imaginary coefficient
2c) yes
2d) yes
2e) no, power not a whole number

3a) \(x = 6 \), \(x = -3 \), \(x = 2 \)
3b) \(x = 0 \), \(x = \frac{1}{5} \), \(x = \frac{3}{2} \)
3c) \(x = 0 \), \(x = -1 \), \(x = 1 \)

4a) \(x = 2 \)
4b) \(x = 1 \)
4c) \(x = -5 \pm 2\sqrt{2} \) or \(x = -2.62 \), \(x = -7.38 \)

5a) \(x = 4 \)
5b) \(x = 3 \), \(x = 1 \)

6a) \(x = 4 \), \(x = -1.5 \), \(x = \frac{1}{3} \)
6b) \(x = -3 \), \(x = -2 \), \(x = 1 \)
6c) \(x = 0 \), \(x = -1 \), \(x = 2 \), \(x = 3 \)
6d) \(x = -1 \), \(x = 5 \), \(x = 2\sqrt{3} \)

7a) \(x = 2 \)
7b) \(x = \frac{1}{2} \), \(x = \frac{3 \pm \sqrt{13}}{2} \)
7c) \(x = -2 \), \(x = 2 \), \(x = \frac{3 \pm \sqrt{13}}{4} \)
7d) \(x = 0 \), \(x = \pm \sqrt{3} \)

8a) \(y = x^3 - 3x^2 - 24x + 80 \)
8b) \(y = x^4 - 5x^2 + 6 \)
8c) \(y = 2(x^5 - 6x^4 + 26x^3 - 18x^2 - 27x + 27) \)

9) The dimensions of the box are:
1cm by 6cm by 9cm or
2cm by 4cm by 6cm

10a) \(F(x) = -(10-x)(x-5) \)
10b) The carver would have to remove 2 cm off each dimension
10c) Check solutions for graph

11a) \(F(x) = (6+x)(10+2x)(4-x) \)
11b) Jon would have to remove 1.5 feet off the height, add 1.5 to the width, and add 3 feet to the length

12) \(945 = (x+2)(x+4)(x+6) \)
The integers would be 3, 5, 7 and 9 or -9, -7, -5, -3

13) \(90 = \frac{(x-2)(2x+2)}{2} \)
The height of the triangular prism would be 12 units