Gr 12 9.1 Solutions 1. a) B b) C c) D d) A

2.

Characteristic	$y = \frac{5}{x - 2}$
Non-permissible value	x = 2
Behaviour near non- permissible value	As <i>x</i> approaches 2, $ y $ becomes very large.
End behaviour	As $ x $ becomes very large, y approaches 0.
Domain	$\{x \mid x \neq 2, x \in \mathbb{R}\}$
Range	$\{y \mid y \neq 0, y \in \mathbb{R}\}\$
Equation of vertical asymptote	<i>x</i> = 2
Equation of horizontal asymptote	y = 0

domain: $\{x \mid x \neq 1, x \in \mathbb{R}\}$; range: $\{y \mid y \neq 0, y \in \mathbb{R}\}$; intercept: (0, -3); asymptotes: x = 1, y = 0

domain: $\{x \mid x \neq 0, x \in \mathbb{R}\}$; range: $\{y \mid y \neq 6, y \in \mathbb{R}\}$;

domain: { $x \mid x \neq -4, x \in \mathbb{R}$ }; range: { $y \mid y \neq -2, y \in \mathbb{R}$ };

intercepts: (0, -0.75), (-1.5, 0); asymptotes: x = -4, y = -2

domain: { $x \mid x \neq -2, x \in \mathbb{R}$ }; range: { $y \mid y \neq 8, y \in \mathbb{R}$ }; intercepts: (0, 8.5), (-2.125, 0); asymptotes: x = -2, y = 8

asymptotes: *x* = 1, *y* = 2; intercepts: (-2.5, 0), (0, -5)

b) /

d)

asymptotes: x = -2, y = 4; intercepts: (0, -1.5), (0.75, 0)

The graph of $y = \frac{1}{x^2 + 6x + 9}$ is the graph of $y = \frac{1}{x^2}$ translated 3 units left.

8.

x	у
-5	0.92
-2	0.56
1	-0.17
4	-2.33
7	undefined
10	6.33
13	4.17
16	3.44
19	3.08

	У		i 🖡				
	8-						
	4-			\geq	5		>
* _8 _4	0	4	18	12	16	20	×
	-4-						
	-8-		\i \!				
	¥		VI				1

Characteristic	$y = \frac{2x - 1}{x - 7}$
Non-permissible value	<i>x</i> = 7
Behaviour near non- permissible value	As <i>x</i> approaches 7, $ y $ becomes very large.
End behaviour	As $ x $ becomes very large, y approaches 2.
Domain	$\{x \mid x \neq 7, x \in \mathbb{R}\}$
Range	$\{y \mid y \neq 2, y \in \mathbb{R}\}$
Equation of vertical asymptote	<i>x</i> = 7
Equation of horizontal asymptote	<i>y</i> = 2

9. a) $t = \frac{d}{s}$

b) $t = \frac{351}{65} = 5.4$, so 5.4 hours or 5 h and 24 min **c**) 70.2 km/h

BLM 9–3 Section 9.2 Extra Practice

1. point of discontinuity at $(-3, \frac{1}{10})$ vertical

asymptote: x = 7

2. You can factor the denominator: $y = \frac{x+2}{(x+2)(x+1)}$.

Since the factor (x + 2) appears in the numerator and denominator, the graph will have a point of discontinuity at (-2, -1). The factor (x + 1) appears in the denominator only, so there will be an asymptote at x = -1.

3.

Characteristic	$y = \frac{(x+3)(x-2)}{(x+5)(x+3)}$
Non-permissible value(s)	x = -5 and $x = -3$
Feature exhibited at each non-permissible value	asymptote at $x = -5$; point of discontinuity at $(-3, -2.5)$
Behaviour near each non-permissible value	As x approaches -5 , $ y $ becomes very large. As x approaches -3 , y approaches -2.5 .
Domain	$\{x \mid x \neq -3, -5, x \in \mathbb{R}\}$
Range	$\{y \mid y \neq 1, -\frac{5}{2}, y \in \mathbb{R}\}$

4. a)

x	у
-0.9	3.1
-0.99	3.01
-0.999	3.001
-0.9999	3.0001
-1	undefined
-1 -1.0001	undefined 2.9999
-1 -1.0001 -1.001	undefined 2.9999 2.999
-1 -1.0001 -1.001 -1.01	undefined 2.9999 2.999 2.99

As x approaches -1, y approaches 3. **b**)

x	у
1.9	-4.238 095 24
1.99	-4.472 636 82
1.999	-4.497 251 37
1.9999	-4.499 725 01
2	undefined
2.0001	-4.500 275 01
2.001	-4.502 751 38
2.01	-4.527 638 19
2.1	-4.789 473 68

x	у
3.9	-109
3.99	-1 099

3.999	-10 999
3.9999	-109 999
4	undefined
4.0001	110 001
4.001	11 001
4.01	1 101
4.1	111

As x approaches 2, y approaches -4.5, and as x approaches 4, |y| becomes very large, approaching negative infinity or positive infinity.

5. a) vertical asymptote: x = -2; point of

discontinuity at $(-5, \frac{5}{2})$;

x-intercept: (0, 0); *y*-intercept: (0, 0)

	1	y,	k		
		8-			-
		4-			
:	~				3
-8	-4	p	(0, 0) 4	8	X
		4-			
		8-			
	<u> </u>				-

b) vertical asymptote: x = -3; point of discontinuity at $(3, -\frac{1}{16})$;

x-intercept: (4, 0); *y*-intercept: $(0, -\frac{4}{3})$

	A.	У				
		8-				
		4-				
-				(4, ())	-
-8	-4	0	~	4	8	x
		4-	(0, -	4) 3		
		-8-				
		(+		÷

c) no vertical asymptote; point of discontinuity at (-1, 3); *x*-intercept: (-4, 0); *y*-intercept: (0, 4)

	y,		1	
	8-			
(10)	4	(0, 4)		
-8 -4	0	4	8	×
	-4-			
4	Q-			

d) no vertical asymptote; point of discontinuity at (-3, -7); *x*-intercept: (0.5, 0); *y*-intercept: (0, -1)

6.

Characteristic	$y = \frac{x^2 - 3x}{3x - 9}$	$y = \frac{x^2 + 3x}{3x - 9}$
Non- permissible value(s)	<i>x</i> = 3	<i>x</i> = 3
Feature exhibited at each non- permissible value	point of discontinuity	asymptote
Behaviour near each non- permissible value	As <i>x</i> approaches 3, <i>y</i> approaches 1.	As x approaches 3, y becomes very large.

7. a) C; Example: In factored form, the rational function has two non-permissible values in the denominator, which do not appear in the numerator. Therefore, the graph with two asymptotes is the most appropriate choice.

b) B; Example: In factored form, the rational function has one non-permissible value that appears in both the numerator and denominator, and another non-permissible value that is only in the denominator. Therefore, the graph with one asymptote and one point of discontinuity is the most appropriate choice.
c) A; Example: In factored form, one non-permissible value appears in the numerator and denominator. Therefore, the graph has a point of discontinuity, but no asymptote.

8. a)
$$y = \frac{(x-3)(x+2)}{(x-3)}$$
 or $y = \frac{x^2 - x - 6}{x-3}$
b) $y = \frac{(x-2)(x+2)}{(x+2)}$ or $y = \frac{x^2 - 4}{x+2}$
c) $y = \frac{(x+4)}{(4-x)(4+x)}$ or $y = \frac{x+4}{16-x^2}$
d) $y = \frac{(x+5)}{(x+3)(x+5)}$ or $y = \frac{x+5}{x^2+8x+15}$
9. Example: $y = \frac{-12(2x+5)}{(x-2)(2x+5)}$

BLM 9–4 Section 9.3 Extra Practice

1. a) $x = \frac{3}{5}$ **b)** x = 5 **c)** x = 24 **d)** x = 4**2. a)** x = 10 and x = -4 **b)** x = 7 and x = 1**c)** x = 10 and x = -3 **d)** $x = \frac{3}{2}$ and x = -2**3. a)** x = 5 and x = 1**b)**

c) The value of the function is 0 when the value of x is 1 or 5. The x-intercepts of the graph of the function are the same as the roots of the corresponding equation. 4. a) x = 0 and x = 3.5

b) x = -2 and x = 6

5. a) $0 = x^2 - 8x + 12$

8. The solution n = 3 is a non-permissible value, so there is no solution.

9. Carmen: 36 h; James: 45 h