Gr 12 9.1 Solutions

1. a) B b) C c) $\mathrm{D} \quad$ d) A

Characteristic	$y=\frac{5}{x-2}$
Non-permissible value	$x=2$
Behaviour near nonpermissible value	As x approaches $2,\|y\|$ becomes very large.
End behaviour	As $\|x\|$ becomes very large, y approaches 0 .
Domain	$\{x \mid x \neq 2, x \in \mathrm{R}\}$
Range	$\{y \mid y \neq 0, y \in \mathrm{R}\}$
Equation of vertical asymptote	$x=2$
Equation of horizontal asymptote	$y=0$

3. a)

domain: $\{x \mid x \neq 1, x \in \mathrm{R}\}$; range: $\{y \mid y \neq 0, y \in \mathrm{R}\}$; intercept: $(0,-3)$; asymptotes: $x=1, y=0$
b)

domain: $\{x \mid x \neq 0, x \in \mathrm{R}\}$; range: $\{y \mid y \neq 6, y \in \mathrm{R}\}$; intercept: $\left(-\frac{1}{3}, 0\right)$; asymptotes: $x=0, y=6$
c)

domain: $\{x \mid x \neq-4, x \in \mathrm{R}\} ;$ range: $\{y \mid y \neq-2, y \in \mathrm{R}\}$;
intercepts: $(0,-0.75),(-1.5,0)$; asymptotes: $x=-4, y=-2$
d)

domain: $\{x \mid x \neq-2, x \in \mathrm{R}\}$; range: $\{y \mid y \neq 8, y \in \mathrm{R}\}$; intercepts: $(0,8.5),(-2.125,0)$; asymptotes: $x=-2, y=8$
4. a)

asymptotes: $x=1, y=2$;
intercepts: $(-2.5,0),(0,-5)$
b)

asymptotes: $x=-2, y=4$;
intercepts: $(0,-1.5),(0.75,0)$
5. a) $y=\frac{3}{x}$
b) $y=\frac{4}{x}$
c) $y=\frac{2}{x-5}$
d) $y=-\frac{2}{x+4}$
6. a) $a=3, k=4$
b)

7.

The graph of $y=\frac{1}{x^{2}+6 x+9}$ is the graph of $y=\frac{1}{x^{2}}$
translated 3 units left.
8.

\boldsymbol{x}	\boldsymbol{y}
-5	0.92
-2	0.56
1	-0.17
4	-2.33
7	undefined
10	6.33
13	4.17
16	3.44
19	3.08

Characteristic	$\boldsymbol{y}=\frac{\mathbf{2 x - 1}}{\boldsymbol{x}-\mathbf{7}}$
Non-permissible value	$x=7$
Behaviour near non- permissible value	As x approaches $7,\|y\|$ becomes very large.
End behaviour	As $\|x\|$ becomes very large, y approaches 2.
Domain	$\{x \mid x \neq 7, x \in \mathrm{R}\}$
Range	$\{y \mid y \neq 2, y \in \mathrm{R}\}$
Equation of vertical asymptote	$y=7$
Equation of horizontal asymptote	

9. a) $t=\frac{d}{s}$
b) $t=\frac{351}{65}=5.4$, so 5.4 hours or 5 h and 24 min
c) $70.2 \mathrm{~km} / \mathrm{h}$

BLM 9-3 Section 9.2 Extra Practice

1. point of discontinuity at $\left(-3, \frac{1}{10}\right)$ vertical asymptote: $x=7$
2. You can factor the denominator: $y=\frac{x+2}{(x+2)(x+1)}$.

Since the factor $(x+2)$ appears in the numerator and denominator, the graph will have a point of discontinuity at $(-2,-1)$. The factor $(x+1)$ appears in the denominator only, so there will be an asymptote at $x=-1$.
3.

Characteristic	$\boldsymbol{y}=\frac{(x+3)(\boldsymbol{x}-\mathbf{2})}{(\boldsymbol{x}+\mathbf{5})(\boldsymbol{x}+\mathbf{3})}$
Non-permissible value(s)	$x=-5$ and $x=-3$
Feature exhibited at each non-permissible value	asymptote at $x=-5 ;$ point of discontinuity at $(-3,-2.5)$
Behaviour near each non-permissible value	As x approaches $-5,\|y\|$ becomes very large. As x approaches $-3, y$ approaches -2.5.
Domain	$\{x \mid x \neq-3,-5, x \in \mathrm{R}\}$
Range	$\left\{y \mid y \neq 1,-\frac{5}{2}, y \in \mathrm{R}\right\}$

4. a)

\boldsymbol{x}	\boldsymbol{y}
-0.9	3.1
-0.99	3.01
-0.999	3.001
-0.9999	3.0001
-1	undefined
-1.0001	2.9999
-1.001	2.999
-1.01	2.99
-1.1	2.9

As x approaches $-1, y$ approaches 3 .
b)

\boldsymbol{x}	\boldsymbol{y}
1.9	-4.23809524
1.99	-4.47263682
1.999	-4.49725137
1.9999	-4.49972501
2	undefined
2.0001	-4.50027501
2.001	-4.50275138
2.01	-4.52763819
2.1	-4.78947368

\boldsymbol{x}	\boldsymbol{y}
3.9	-109
3.99	-1099

3.999	-10999
3.9999	-109999
4	undefined
4.0001	110001
4.001	11001
4.01	1101
4.1	111

As x approaches 2, y approaches -4.5 , and as x approaches $4,|y|$ becomes very large, approaching negative infinity or positive infinity.
5. a) vertical asymptote: $x=-2$; point of discontinuity at $\left(-5, \frac{5}{3}\right)$;
x-intercept: $(0,0) ; y$-intercept: $(0,0)$

b) vertical asymptote: $x=-3$; point of discontinuity at $\left(3,-\frac{1}{16}\right)$;
x-intercept: $(4,0) ; y$-intercept: $\left(0,-\frac{4}{3}\right)$

c) no vertical asymptote; point of discontinuity at $(-1,3)$; x-intercept: $(-4,0) ; y$-intercept: $(0,4)$

d) no vertical asymptote; point of discontinuity at $(-3,-7)$; x-intercept: $(0.5,0) ; y$-intercept: $(0,-1)$

6.

Characteristic	$\boldsymbol{y}=\frac{\boldsymbol{x}^{2}-\mathbf{3 x}}{\mathbf{3 x - 9}}$	$\boldsymbol{y}=\frac{\boldsymbol{x}^{\mathbf{2}}+\mathbf{3 x}}{\mathbf{3 x - 9}}$
Non- permissible value(s)	$x=3$	$x=3$
Feature exhibited at each non- permissible value	point of discontinuity	asymptote
Behaviour near each non- permissible value	As x approaches 3, y approaches 1.	As x approaches 3, ly\| becomes very large.

7. a) C; Example: In factored form, the rational function has two non-permissible values in the denominator, which do not appear in the numerator. Therefore, the graph with two asymptotes is the most appropriate choice.
b) B; Example: In factored form, the rational function has one non-permissible value that appears in both the numerator and denominator, and another nonpermissible value that is only in the denominator. Therefore, the graph with one asymptote and one point of discontinuity is the most appropriate choice. c) A; Example: In factored form, one non-permissible value appears in the numerator and denominator. Therefore, the graph has a point of discontinuity, but no asymptote.
8. a) $y=\frac{(x-3)(x+2)}{(x-3)}$ or $y=\frac{x^{2}-x-6}{x-3}$
b) $y=\frac{(x-2)(x+2)}{(x+2)}$ or $y=\frac{x^{2}-4}{x+2}$
c) $y=\frac{(x+4)}{(4-x)(4+x)}$ or $y=\frac{x+4}{16-x^{2}}$
d) $y=\frac{(x+5)}{(x+3)(x+5)}$ or $y=\frac{x+5}{x^{2}+8 x+15}$
9. Example: $y=\frac{-12(2 x+5)}{(x-2)(2 x+5)}$

BLM 9-4 Section 9.3 Extra Practice
$\begin{array}{llll}\text { 1. a) } x=\frac{3}{5} & \text { b) } x=5 & \text { c) } x=24 & \text { d) } x=4\end{array}$
$\begin{array}{ll}\text { 2. a) } x=10 \text { and } x=-4 & \text { b) } x=7 \text { and } x=1\end{array}$
c) $x=10$ and $x=-3$
d) $x=\frac{3}{2}$ and $x=-2$
3. a) $x=5$ and $x=1$
b)

c) The value of the function is 0 when the value of x is 1 or 5 . The x-intercepts of the graph of the function are the same as the roots of the corresponding equation.
4. a) $x=0$ and $x=3.5$

b) $x=-2$ and $x=6$

c) $x=-0.25$ and $x=-2$

5. a) $0=x^{2}-8 x+12$

$x=2$ and $x=6$
b) $y=\frac{6-2 x}{x^{2}-1}$

$x=3$
6. a) $x \approx 0.76$ and $x \approx 5.24$ b) $x \approx-2.79$ and $x \approx 1.79$
c) $x \approx 0.53$ and $x \approx 4.87$
7. a)

$x \approx 0.63$
b)

$x \approx 0.85$ and $x \approx 6.15$
8. The solution $n=3$ is a non-permissible value, so there is no solution.
9. Carmen: 36 h; James: 45 h

