5.2 Logarithmic Functions and Their Graphs

Exponential Form:
$y=b^{x}$
The inverse is:
$x=b^{y}$
To solve for y we need to use logarithmic functions.

Definition of a Logarithm Function:

For $b>0, b \neq 1$
$\mathrm{y}=\log _{b} x$ is the equivalent form of $x=b^{y}$ and is the inverse function of an exponential function with base b
(read as log base b of x)

Logarithmic form

Exponent form
$\mathrm{y}=\log _{b} x$
$x=b^{y}$
Where:
b - base
y-exponent
Note: The default log button is base 10:
ie $\mathrm{y}=\log \mathrm{x}$ is $\mathrm{y}=\log _{10} x$

Example 1:

Change from logarithmic to exponential form:
a.) $3=\log _{2} 8$
b.) $-2=\log _{3} \frac{1}{9}$

Example 2:

Change from exponential to logarithmic form:
a.) $5^{3}=125$
b.) $10^{-1}=\frac{1}{10}$

Example 3:

Simplify by changing the form:
a.) $\log _{81} 3$
b.) $\log _{2} 8 \sqrt{2}$

Logarithmic Graphs

Since logarithmic and exponential graphs are inverses the properties of the exponential function is inverted. Both exponential and logarithmic functions are one-to-one (hence they are both functions)

$$
b>0, b \neq 1
$$

	$y=b^{x}$	$y=\log _{b} x$
Domain:		
Range:		
Asymptote:		

Example 4:
Graph: $y=\log _{2} x$

Example 5: Determine the inverse of the following:
a.) $f(x)=3^{x+1}-2$
b.) $f(x)=\log _{3}(x-5)+4$

