5.2 Logarithmic Functions and Their Graphs

Exponential Form:

$$y = b^x$$

The inverse is:

 $x = b^y$

To solve for *y* we need to use **logarithmic functions**.

Definition of a Logarithm Function:

For b > 0, $b \neq 1$

 $y = \log_b x$ is the equivalent form of $x = b^y$ and is the inverse function of an exponential function with base b

(read as log base b of x)

Logarithmic form	Exponent form	
$y = \log_b x$	$x = b^y$	
Where: <i>b</i> - base		
y - exponent		
Note: The default log button is base 10:		
ie y = $\log x$ is y = $\log_{10} x$		
Example 1:		

Change from logarithmic to exponential form:

a.) $3 = \log_2 8$ b.) $-2 = \log_3 \frac{1}{9}$

Example 2:

Change from **exponential** to **logarithmic** form:

a.)
$$5^3 = 125$$
 b.) $10^{-1} = \frac{1}{10}$

Example 3:

Simplify by changing the form:

a.) $\log_{81} 3$ b.) $\log_2 8\sqrt{2}$

Logarithmic Graphs

Since logarithmic and exponential graphs are inverses the properties of the exponential function is inverted. Both exponential and logarithmic functions are one-to-one (hence they are both functions)

$b > 0, b \neq 1$

	$y = b^x$	$y = \log_b x$
Domain:		
Range:		
Asymptote:		

Example 4:

Graph: $y = \log_2 x$

Example 5: Determine the inverse of the following:

a.)
$$f(x) = 3^{x+1} - 2$$

b.) $f(x) = \log_3(x-5) + 4$