5.1 Exponents

Review of Exponential Rules

1. $b^{0}=1$
2. $b^{x} \cdot b^{y}=b^{x+y}$
3. $\frac{b^{x}}{b^{y}}=b^{x-y}$
4. $\left(b^{x}\right)^{y}=b^{x y}$
5. $b^{-x}=\frac{1}{b^{x}}$
6. $\left(\frac{b}{a}\right)^{-x}=$
$\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$
7. $(a b)^{x}=a^{x} b^{x} \quad$ 8. $a^{x}=a^{y}$ if and only if $x=y$

Example 1:

Simplify: Make each a single term with an exponent
a.) $\left(4^{x}\right)^{2+x}\left(32^{x}\right)^{-x}$
b.) $\frac{9^{x}\left(27^{x-3}\right)}{243^{x+1}}$

Example 2:

Solve: Change the base to be the same to solve
а.) $3^{3 x+4}=81^{x+2}$
b.) $8(8)^{x}=2$

Graphing Exponential Functions
$y=b^{x}, b>1 \quad y=b^{x}, 0<b<1$
The point $(1, b)$ appears on both graphs:
Properties of Exponential Graphs
For graphs of the form $y=b^{x}, b>0, b \neq 1$
Domain: $x \in R$
Range: $y>0$
y-intercept = 1
Horizontal asymptote at $\mathrm{y}=0$
i.) When $0<b<1$, the graph is decreasing (decay)
ii.) When $b>0$, the graph is increasing (growth)

Example 3: Sketch

$$
y=3^{x+1}+2
$$

Applications:

Exponential equations are found in a general form:
$P=P_{0} b^{x}$ where P is the final amount
P_{0} is the initial amount
b is the rate of growth or decay
A. Compound Interest:

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

$A=$ final
$P=$ principle, or initial amount
$r=$ rate of yearly interest
$n=$ number of times yearly interest is compounded
$t=$ time (in years)

Example 4:

How much more would you earn in two years if you compounded daily compared to monthly with an initial investment of $\$ 1000$?

B. Growth and Decay Formulas:

$$
A=A_{0}(b)^{\frac{t}{T}}
$$

$A=$ final
$\mathrm{A}_{0}=$ initial amount
$b=$ growth or decay value (e.g., half life use $\frac{1}{2}$)
$T=$ time of growth or decay (e.g., half-life time)
$\mathrm{t}=$ total time

Example 5:

a. An element has a half-life of 30 years. If 1.0 mg of this element decays over a period of 90 years, how many mg of this element would remain?
b. An element has a half-life of 29 hours. How many mg of the element will remain after 46 hours?

Another form of growth and decay is written in the form

$$
A=A_{0} e^{k t}
$$

This has many Calculus applications
$e \approx 2.71828$
$\mathrm{k}=$ proportional constant

