4.3: Rational Functions:

Rational Function:

$f(x)=\frac{g(x)}{h(x)}$ where $g(x)$ and $h(x)$ are polynomials, and $h(x) \neq 0$
Note: $h(x)$ can be a constant
Example:
$f(x)=\frac{3 x+5 x^{2}}{\sqrt{3}},=\frac{3 x^{3}-2 x^{2}}{3 x^{2}}, g(x)=3 x^{3}-2 x^{2}$ are all rational functions
$y=\frac{3 x+5 x^{2}}{\sqrt{3 x}}, f(x)=\frac{3 x+5 x^{1.5}}{\sqrt{3}}$ are not rational functions

Asymptotes:

An asymptote is a line that part of the graph approaches.

Reminder:

For the function:
$y=\frac{1}{x}$

The graph appears to get close to the lines $y=0$, and $x=0$.

Vertical Asymptotes of Rational Functions:

Given $f(x)=\frac{g(x)}{h(x)}$ be a simplified rational function. If c is a zero of $h(x)$, then the line $x=c$ is a vertical asymptote.

Example 1: Find the vertical asymptotes
a.) $f(x)=\frac{x}{x^{2}-5 x-6}$
b.) $g(x)=\frac{4-x}{x^{4}-81 x^{2}}$

Horizontal Asymptotes of Rational Functions:

Given $f(x)=\frac{g(x)}{h(x)}$ and m is the degree of the numerator (top) and n is the degree of the denominator (bottom) . In other words

$$
\frac{g(x)}{h(x)}=\frac{a_{m} x^{m}+\cdots+a_{0}}{b_{n} x^{n}+\cdots+b_{0}}
$$

1. If $m<n$, then $\mathrm{y}=0$ is a horizontal asymptote.
2. If $m=n$, then $y=\frac{a_{m}}{b_{n}}$ (ratio of the leading coefficients) is the horizontal asymptote.
3. If $m>n$, then there is a slant or oblique asymptote (which is not covered in this course).

Alternatively, examining the end behaviour by letting $x->\infty$ and $x->-\infty$ (or substituting x with a relatively large value) we can determine the horizontal asymptote (if it exists).

Example 2: Determine the horizontal asymptote of the rational functions:
a.) $f(x)=\frac{4 x-6}{3 x^{2}+4 x-2}$
b.) $g(x)=\frac{6-x^{2}}{3 x^{2}-4 x+4}$
c.) $h(x)=\frac{x^{3}-3 x-2}{3 x^{2}}$

Holes in Rational Functions:

A hole (or discontinuity) exists in a rational function if a value of x sets both the numerator and denominator to 0 .

Consider the rational function:

$$
f(x)=\frac{x-3}{(x-3)(x+2)}
$$

At first, it appears there are vertical asymptotes at $x=-2$ and 3 , but when the function is simplified and reduced:
$f(x)=\frac{1}{x+2} \quad$ (*note: $\mathrm{x}+2$ stays in the denominator)
From the simplified form, there is one vertical asymptote at $x=-2$, the domain $x \neq 3$ still exists from the original function and thus a hole is created at $x=3$.

To find the y value of the hole substitute the x value into the simplified function: $f(3)=$ The point $\left(3, \frac{1}{5}\right)$ is a hole.

Sketch of $f(x)=\frac{x-3}{(x-3)(x+2)}$

Example 3: Determine the hole of the rational function and sketch a graph:

$$
f(x)=\frac{x^{2}-9}{x+3}
$$

x-intercept(s) and \mathbf{y}-intercept of Rational Functions

The x-intercept is when $y=0$. In the case of rational functions, we can find the x-values when the numerator is equal to 0 (and exists on the domain)

The y-intercept is when $x=0$. Substitute $x=0$ and find the $y=v a l u e$. There is only $1 y$-intercept.
Example 4: Determine the x - and y-intercepts of the following rational functions:
a.) $f(x)=\frac{(x-2)(x+3)(x-4)}{(x+1)(x-1)}$
b.) $g(x)=\frac{x^{3}-5 x^{2}-14 x}{4 x^{2}-9}$
c.) $h(x)=\frac{2 x^{2}+12 x+18}{x^{2}-9}$

