4.2: Solving Radical Equations

Power Theorem

If $x=y$, then $x^{n}=y^{n}$, where n is a positive integer.
(However, if $x^{n}=y^{n}$, then $x=y$ may not be true; solutions that do not satisfy the original equation are called extraneous solutions)

Solving Radical Equations Algebraically:

1. Isolate the radical.
2. Square/cube both sides to remove the radical.
3. Solve.
4. Check with original equation for extraneous solutions.

Example 1:

a.) $3 \sqrt{x}=12$
b.) $\sqrt{5 x-2}-6=0$
c.) $5+\sqrt{3 x-1}=3$
d.) $\sqrt{x+2}-x=0$
e.) $\sqrt{3 x+7}-x=1$
f.) $\sqrt{x-1}-x+7=0$
g.) $\sqrt[3]{x-10}+x=0$

Solving Radical Equations Graphically:

Either use a table of values to try and predict the x-intercept OR isolate the radical and sketch both sides of the equation to find the intersection point.

Example 2:
Solve graphically:

$$
y=\sqrt{x+1}-x+2
$$

