4.2: Solving Radical Equations

Power Theorem

If x = y, then $x^n = y^n$, where *n* is a positive integer.

(However, if $x^n = y^n$, then x = y may not be true; solutions that do not satisfy the original equation are called **extraneous solutions**)

Solving Radical Equations Algebraically:

- 1. Isolate the radical.
- 2. Square/cube both sides to remove the radical.
- 3. Solve.
- 4. Check with original equation for extraneous solutions.

Example 1:

a.) $3\sqrt{x} = 12$

b.) $\sqrt{5x-2} - 6 = 0$

c.)
$$5 + \sqrt{3x - 1} = 3$$

d.) $\sqrt{x+2} - x = 0$

e.)
$$\sqrt{3x+7} - x = 1$$

f.)
$$\sqrt{x-1} - x + 7 = 0$$

g.)
$$\sqrt[3]{x-10} + x = 0$$

Solving Radical Equations Graphically:

Either use a table of values to try and predict the x-intercept OR isolate the radical and sketch both sides of the equation to find the intersection point.

Example 2:

Solve graphically:

$$y = \sqrt{x+1} - x + 2$$

