Gr 11 Ch 3 Answers:

BLM 3–2 Chapter 3 Prerequisite Skills

1. a) $8x^2 - 4x$ **b)** $4x^2 + 25x - 21$ c) $4x^2 - 20x + 25$ d) $-x^2 + 3x + 13$ **2. a)** -3 **b)** $m = \frac{3}{2}$ **c)** $y = \frac{3}{2}x - 3$ **d**) all real numbers or $\{y \mid y \in \mathbf{R}\}$ **e**) 2 **3.** Example: (14, -1.2), (19, -3.2) **4.** a) 3x + 4y - 8 = 0 b) 2x + y + 2 = 0**5.** a) y = -3x + 4; m = -3; y-intercept = 4 **b**) $y = \frac{3}{7}x - \frac{1}{7}$; $m = \frac{3}{7}$; y-intercept = $-\frac{1}{7}$ **c**) $y = \frac{3}{4}x$; $m = \frac{3}{4}$; y-intercept = 0 **6.** a) 5x + y - 2 = 0; A = 5, B = 1, C = -2**b**) -2x + 3y + 21 = 0; A = -2, B = 3, C = 21c) 3x - 16y - 4 = 0; A = 3, B = -16, C = -47. a) Label the horizontal axis x and the vertical axis g(x). **b**) –14 c) Yes. If you substitute x = 5, you get g(5) = 7. **d**) g is the set of all real numbers **8. a)** 9 **b)** $\frac{81}{4}$ **c)** $\frac{49}{16}$ **9.** a) 1 b) 3 c) 2

10. a) The y-intercept could have a value of -1.

3

	x	-1	0	1	2
	у	-4	-1	2	5
	y ≬	1			
	4-				
	2 -	1			
		4			
-	0	2	X		
	-2/				
	4	_			
ł	′ ↓				

b) The *y*-intercept could have a value of 2.

x	-3	0	3	6	7
у	0	2	4	6	$\frac{20}{3}$
	y A				T
	6-				
	4-		/		-
	3				
$\mathbf{\lambda}$					>
-2	0	2	4	6	x
		y 0 94 6 4 2	y 0 2 y 4 6- 4- 2-	y 0 2 4	y 0 2 4 6

11. a)

ants A A	Effect	of Ai	r Pol	luti	on	
eased Plar	•~~					
Disea Disea				••		
den t						>
Ĵ 0 J	50 D	100 istanc	150 e (km	20)	0	X

b) p(50) = 37; p(150) = 31; p(200) = 28**c**) $\{p(x) \mid 28 \le p(x) \le 37\}$

BLM 3-4 Section 3.1 Extra Practice

1. a) The graph can be obtained by applying a change in width about the *x*-axis by a factor of 3. The graph opens upward, has a minimum *y*-value of 0, and the range is $y \ge 0$.

b) The graph can be obtained by applying a change in width about the *x*-axis by a factor of 5, and then a reflection in the *x*-axis. The graph opens downward, has a maximum *y*-value of 0, and the range is $y \le 0$. **c)** The graph can be obtained by applying a vertical translation up 8 units. The graph opens upward, has a minimum *y*-value of 8, and the range is $y \ge 8$. **d)** The graph can be obtained by applying a vertical translation down 5 units. The graph opens upward, has a minimum *y*-value of -5, and the range is $y \ge -5$. **2. a)** The graph of $y = (x - 6)^2$ can be obtained from $y = x^2$ by applying a horizontal translation 6 units to the right.

vertex: (6, 0); axis of symmetry: x = 6; domain: $x \in \mathbf{R}$; range: $y \ge 0$; x-intercept: x = 6; y-intercept: y = 36

b) The graph of $y = (x + 1)^2$ can be obtained by applying a horizontal translation 1 unit to the left.

vertex: (-1, 0); axis of symmetry: x = -1;

domain: $x \in \mathbf{R}$; range: $y \ge 0$; x-intercept: x = -1; y-intercept: y = 1

c) The graph of $y = (x + 4)^2 + 3$ can be obtained by applying a horizontal translation 4 units to the left and a vertical translation 3 units up.

vertex: (-4, 3); axis of symmetry: x = -4; domain: $x \in \mathbb{R}$; range: $y \ge 3$; *x*-intercept: none; *y*-intercept: y = 19

d) The graph of $y = (x - 2)^2 - 1$ can be obtained by applying a horizontal translation 2 units to the right and a vertical translation 1 unit down.

Ay,			1	
6-			$\left \right $	
4				
			1	
2-			/	
<		\downarrow	4	×
, I I I I I I I I I I I I I I I I I I I			4	-1

5.

vertex: (2, -1); axis of symmetry: x = 2; domain: $x \in \mathbb{R}$; range: $y \ge -1$; *x*-intercepts: x = 1and 3; *y*-intercept: y = 3**3.** a) $y = 0.5x^2$ b) $y = -0.5x^2$ c) $y = 0.5(x + 6)^2$ d) $y = 0.5x^2 - 3$

4. a) The graph can be obtained from the graph of $f(x) = x^2$ by applying a horizontal translation 7 units to the left, and a vertical translation 3 units down. **b)** The graph can be obtained from the graph of $f(x) = x^2$ by applying a change in width about the *x*-axis by a factor of 2, a reflection in the *x*-axis, and a vertical translation 5 units up. **c)** The graph can be obtained from the graph of

 $f(x) = x^2$ by applying a change in width about the x-axis by a factor of $\frac{1}{3}$, a reflection in the x-axis, and

a horizontal translation 3 units to the right. **d)** The graph can be obtained from the graph of $f(x) = x^2$ by applying a change in width about the *x*-axis by a factor of 4, a horizontal translation 2 units to the left, and a vertical translation 1 unit down.

	a)	b)	c)	d)
Vertex	(5, 1)	(-2, 0)	(-4, -5)	(0, 3)
Axis of symmetry	<i>x</i> = 5	x = -2	<i>x</i> = –4	x = 0
Direction	upward	downward	upward	downward
Max/min	$\min y = 1$	$\max y = 0$	min $y = -5$	$\max y = 3$
Domain	$x \in \mathbf{R}$	$x \in \mathbf{R}$	$x \in \mathbf{R}$	$x \in \mathbf{R}$
Range	$y \ge 1$	$y \leq 0$	$y \ge -5$	$y \le 3$
Number of x-intercepts	0	1	2	2

6. a)
$$y = 3(x-2)^2$$
 b) $y = -2(x+2)^2 + 3$

c)
$$y = \frac{1}{2}(x-3)^2 - 2$$
 d) $y = -1(x-4)^2 + 1$

7. a)
$$f(x) = -2(x-5)^2$$
 b) $f(x) = \frac{2}{3}(x-2)^2 - 6$

BLM 3–5 Section 3.2 Extra Practice

1. a) Yes. The function fits the standard form of a quadratic function with a = 1, b = -15, and c = 0. b) $y = x^2 - 16$ Yes. The function fits the standard form of a quadratic function with a = 1, b = 0, and c = -16. c) Yes. The function fits the standard form of a quadratic function with a = -4.9, b = 0, and c = 400. d) No. The function does not fit the standard form of a quadratic function.

2.		a)	b)
	Vertex	(-1, -4)	(-1, 9)
	Axis of symmetry	x = -1	x = -1
	x-intercepts	-3 and 1	-4 and 2
	y-intercept	-3	8
	Direction	upward	downward

5. a) w =width; 2 width + length = 200 m of fencing, so length = 200 - 2w

b)
$$A(w) = w(200 - 2w)$$
 or $A(w) = -2w^2 + 200w$

b) 100 m; this represents the initial height of the projectile

c) 21.9 s; this represents the time that the projectile is in the air

d) 651.25 m; occurs at 10.5 s

BLM 3–6 Section 3.3 Extra Practice

1. a) 25; $(x-5)^2$ b) 16; $(x+4)^2$ c) 36; $(x-6)^2$ **d**) 1; $(x + 1)^2$ **2. a)** $y = (x + 1)^2 - 5; (-1, -5)$ **b**) $y = (x - 3)^2 + 4$; (3, 4) c) $y = (x + 4)^2 - 10; (-4, -10)$ **d**) $y = (x + 12)^2 - 90; (-12, -90)$ **3.** a) $y = 3(x-2)^2 + 1$ b) $y = -2(x+5)^2 - 6$ c) $y = 6(x-4)^2 - 96$ d) $y = -4(x+7)^2$ **4.** a) $y = (x + 3)^2 - 5$; min of -5 when x = -3-6 _4 -2 10 -2 **b**) $y = 2(x - 4)^2 - 1$; min of -1 when x = 46 4 2-0 6 **d**) $y = -1(x - 9)^2 + 81;$ c) $y = -3(x+2)^2 + 5;$ max of 81 when x = 9max of 5 when x = -280-60 2 40 4 -2 þ 20-0 -20 6 5. a) b) c) Vertex (-5, -9)(-1, 6)(-7.5, 4.5)Axis of x = -1x = -7.5x =x = -5symmetry min y =Max/min min y = -9 $\max y = 6$ min y = 4.5Domain $x \in \mathbf{R}$ $x \in \mathbf{R}$ $x \in \mathbf{R}$ $x \in \mathbf{R}$ Range $y \ge -9$ $y \le 6$ $y \ge 4.5$ $y \ge$

d)

 $\frac{1}{3}, \frac{1}{3}$

2 1

1

3

 $\frac{2}{3}$

 $\frac{2}{3}$

6. a) R(x) = (1200 + 100x)(6.00 - 0.30x)

b) 4 weeks; \$7680

c) Example: Assume that yield increases will remain constant at 100 bushels per week; assume price will decrease at 30¢ each week.