## Ch 3.4: The Remainder and Factor Theorems:

The Remainder Theorem:
If the polynomial $P(x)$ is divided by $x-a$, the remainder is $P(a)$.
Reason:
From last chapter:

$$
P(x)=(x-a) q(x)+r(x)
$$

## Example 1:

What is the remainder when $P(x)=3 x^{4}-5 x^{2}+6 x-2$ is divided by $(x+1)$ ?

## Example 2:

For what value of $k$ will the remainder be -2 when $P(x)=x^{3}-2 x^{2}+k x-5$ is divided by $(x-3)$ ?

## Factor Theorem:

If a polynomial $P(x)$ is divided by $(x-a)$ and there is no remainder, then $(x-a)$ is a factor of $P(x)$.

In other words, if $P(a)=0$, then $(x-a)$ is a factor of $P(x)$.

## Example 3:

Does $P(x)=x^{3}+2 x^{2}+4 x+8$ have a factor of $(x+2)$ ?

## Rational Root Theorem:

The possible roots of polynomial $P(x)=a_{n} x^{n}+\ldots+a_{0}$ are the possible factors of the constant divided by the possible factors of the leading terms:
ie

Factors of $a_{0}$
Factors of $a_{n}$

## Example 4: Determine the possible roots

$2 x^{4}-5 x^{3}-12$ has possible roots:

## Factoring Polynomials:

To factor a polynomial, we must use the rational root theorem and factor theorem to determine the roots.
Using the possible roots, we can try to find a root that satisfies the factor theorem; in other words, find a value of " $a$ " such that $P(a)=0$.

Steps: Factoring (or solving) an $n>2$ degree polynomial.

1. Find all possible roots
2. Find a root that satisfies $P(a)=0$; start testing with smaller values.
3. Synthetically divide the factor.
4. Repeat until completely factored; do not forget any division steps.

Example 5: Factor completely:
a.) $x^{3}-2 x^{2}-13 x-10$
b.) $2 x^{3}-7 x^{2}-7 x+12$

Example 6: Solve by factoring:
a.) $x^{4}-3 x^{3}+x^{2}+3 x-2=0$
b.) $x^{4}+4 x^{3}+2 x^{2}-5 x-2=0$

Note: Factors can always be repeated!
Example 7: Factor, then sketch
a.) $y=x^{5}-4 x^{4}+14 x^{2}-17 x+6$

