3.2 Graphing Polynomial Functions

Graphing Multiplicities:

- a.) If (x a) has a multiplicity of 1 then the graph crosses the x-axis directly at x = a.
- ie: $(x a)^1$...

b.) If (x - a) has a multiplicity that is **even**, then the graph touches and bounces off the x-axis at x = a.

ie: $(x - a)^2$ or $(x - a)^4$

c.) If (x - a) has a multiplicity that is **odd**, then the graph passes through the x-axis at x = a with a curve similar to the function $y = x^3$.

 $(x-a)^3$ or $(x-a)^5$

Graphing functions:

Step 1: Determine the general shape of the graph (end behaviours/degree)

Step 2: Determine and plot zeroes; find their multiplicities.

Step 3: Plot other reasonable points (y-intercept)

Step 4: Sketch the graph

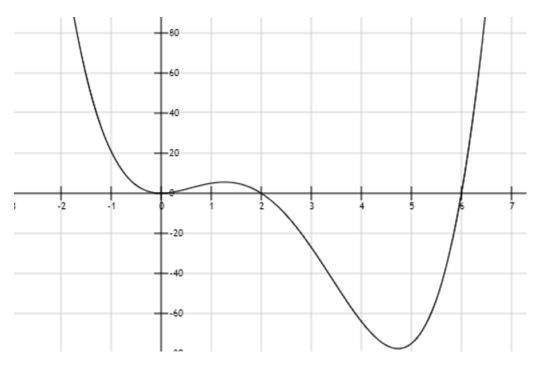
Example 1: Sketch the following

a.) $y = (x+3)(x-1)^2(x-5)^3$

b.) $y = x^4(2-x)^2(x-4)$

c.)
$$y = (3-x)^3(x+1)^2(x-2)^2$$

Equation of Polynomial Functions


- To find the equation of a polynomial
- a) Determine the zeroes and their possible multiplicity
- b) Write the equation down in factored form; leave a coefficient in front
- c) Choose a non-zero point and solve for the coefficient

Example 2:

A polynomial has roots: 2, 2, 2, 1, -5 and passes through the point (3, 4). Determine the equation of the polynomial.

Example 3:

Determine the equation of the following with the least possible degree. Note that (-1, 21) is a point on the graph.

