2.4 Transformations of Graphs

Review: General Graphs:

Quadratic: $y = x^2$

Square Root Graphs: $y = \sqrt{x}$

Absolute Value Graphs: y = |x|

Cubic Graphs: $y = x^3$

Reciprocal Graphs: $y = \frac{1}{x}$

Transformations:

Given the function y = f(x)Translations: Horizontal translation: y = f(x - c) c > 0 is right c < 0 is left Vertical translation: y = f(x) + d d > 0 is up d < 0 is down Example: Given point (1, 2) is in y = f(x). What is the new point after: a.) y = f(x + 3)b.) y = f(x - 2)c.) y = f(x) + 4

d.) y = f(x) - 1

Compressions & Expansions

Horizontal: y = f(bx)

- |b| > 1 is compression
- |b| < 1 is expansion
- Vertical: y = af(x)
- |a| > 1 is expansion
- |a| < 1 is compression

Example: Given point (1, 2) is in y = f(x). What is the new point after:

a.)
$$y = 3f(x)$$

b.) $y = \frac{1}{2}f(x)$

c.)
$$y = f\left(\frac{3}{4}x\right)$$

$$d.) y = f(3x)$$

Reflections:

Vertical: y = af(x)

a < 0 (across x-axis)

Horizontal: y = f(bx)

$$b < 0$$
 (across y-axis)

Example: Given point (1, 2) is in y = f(x). What is the new point after:

a.)
$$y = -f(x)$$

b.) $y = f(-x)$

General Examples:

- 1. Given: $y = \sqrt{x}$, write the equation after:
- a.) Translation up 5, right 2
- b.) Horizontal Compression by a factor of 2 (or to a factor of $\frac{1}{2}$)
- c.) Reflection across the x-axis
- 2. Given: $y = -x^2$ write the equation after:
- a.) Translation down 3, left 2
- b.) Vertical Expansion by a factor of 3
- c.) Reflection across the y-axis

Absolute Value Functions:

The domain remains the same, the range becomes positive or stays positive.

Reciprocal Function

Domain remains the same, take the reciprocal of the range:

Example: Given point (-1, -2) is in y = f(x). What is the new point after:

a.)
$$y = |f(x)|$$

b.) $y = \frac{1}{f(x)}$