2.4 Transformations of Graphs

Review: General Graphs:
Quadratic: $y=x^{2}$

Square Root Graphs: $y=\sqrt{x}$

Absolute Value Graphs: $y=|x|$

Cubic Graphs: $y=x^{3}$

Reciprocal Graphs: $y=\frac{1}{x}$

Transformations:

Given the function $y=f(x)$
Translations:
Horizontal translation: $y=f(x-c)$
$c>0$ is right
$c<0$ is left
Vertical translation: $y=f(x)+d$
$d>0$ is up
$d<0$ is down
Example: Given point $(1,2)$ is in $y=f(x)$. What is the new point after:
a.) $y=f(x+3)$
b.) $y=f(x-2)$
c.) $y=f(x)+4$
d.) $y=f(x)-1$

Compressions \& Expansions
Horizontal: $y=f(b x)$
$|b|>1$ is compression
$|b|<1$ is expansion
Vertical: $y=a f(x)$
$|a|>1$ is expansion
$|a|<1$ is compression

Example: Given point $(1,2)$ is in $y=f(x)$. What is the new point after:
a.) $y=3 f(x)$
b.) $y=\frac{1}{2} f(x)$
c.) $y=f\left(\frac{3}{4} x\right)$
d.) $y=f(3 x)$

Reflections:
Vertical: $y=a f(x)$
$a<0$ (across x-axis)
Horizontal: $y=f(b x)$
$b<0$ (across y-axis)
Example: Given point $(1,2)$ is in $y=f(x)$. What is the new point after:
a.) $y=-f(x)$
b.) $y=f(-x)$

General Examples:

1. Given: $y=\sqrt{x}$, write the equation after:
a.) Translation up 5, right 2
b.) Horizontal Compression by a factor of 2 (or to a factor of $\frac{1}{2}$)
c.) Reflection across the x-axis
2. Given: $y=-x^{2}$ write the equation after:
a.) Translation down 3 , left 2
b.) Vertical Expansion by a factor of 3
c.) Reflection across the y-axis

Absolute Value Functions:

The domain remains the same, the range becomes positive or stays positive.

Reciprocal Function

Domain remains the same, take the reciprocal of the range:

Example: Given point $(-1,-2)$ is in $y=f(x)$. What is the new point after:
a.) $y=|f(x)|$
b.) $y=\frac{1}{f(x)}$

