3.2 Differentiability How f'(a) Might Fail to Exist

A function will not have a derivative at a point P(a, f(a)) where the slopes of the secant lines, $\frac{f(x)-f(a)}{x-a}$ fail to approach a limit as x approaches a. In other words, a function is differentiable if at a point a the function exists, is continuous, and the derivative f'(a) exists

1. A *corner* (where the one-sides derivatives differ)

$$y = |x|$$

2. A *cusp* (where the slopes of the secant lines approach ∞ from one side and $-\infty$ from the other)

$$y = x^{\frac{2}{3}}$$

3. A *vertical tangent* (where the slopes of the secant lines approach $-\infty$ or ∞ from both sides)

$$y = x^{\frac{1}{3}}$$

4. A *discontinuity* (which will cause one or both of the one-sided derivatives to be nonexistent)

$$y = \begin{cases} -1, x < 0\\ 1, x \ge 0 \end{cases}$$

Example 1 Finding Where a Function is Not Differentiable

Find all points in the domain of f(x) = 2|x + 3| - 5 where f is not differentiable.

Theorem: Differentiability Implies Continuity If *f* has a derivative at x = a, then *f* is continuous at x = a.

Be careful: Differentiability implies continuity but continuity does not necessarily imply differentiability. Why not?