3.1 Derivative of a Function

Definition of the Derivative with respect to x

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

This finds the function of the slope at any point on the graph (if the slope exists)

Example 1 Applying the Definition

Differentiate (that is, find the derivative of) $f(x)=x^{3}-x^{2}$

Alternate Definition of the Derivative at a Point

$$
f^{\prime}(x)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Example 2 Applying the Alternate Definition

Differentiate $f(x)=\sqrt{x+1}$ using the alternate definition at $x=3$

Notation

$f^{\prime}(x)$: f prime of x
$\frac{d y}{d x}: \mathrm{dy} \mathrm{dx}$
y^{\prime}

Example 3 Recognizing a given limit as a derivative

Given $f^{\prime}(x)$, determine $f(x)$.
a.) $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$
b.) $\lim _{h \rightarrow 0} \frac{\sqrt[3]{x+h}-\sqrt[3]{x}}{h}$
c.) $\lim _{h \rightarrow 0} \frac{\frac{x+h}{(x+h)^{2}+1}-\frac{x}{x^{2}+1}}{h}$
d.) $\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}$

One-Sided Derivatives

The Right-hand derivative at a

$$
\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h}
$$

The Left-hand derivative at b

$$
\lim _{h \rightarrow 0^{-}} \frac{f(b+h)-f(b)}{h}
$$

Example 4 One-Sided Derivatives Can Differ at a Point

Show that the following function has left-hand and right-hand derivatives at $x=3$, but no derivative there.

$$
y=\left\{\begin{array}{l}
x^{2}, x<3 \\
2 x, x \geq 3
\end{array}\right.
$$

