9.3 Connecting Graphs and Rational Equations

Solving Rational Functions:

Definitions:

Roots of an equation: The roots (or zeros) of an equation are the solution to an equation that is set to 0 .
x-intercepts of an equation: The value of x that where the graph passes through the x-axis.

A. Algebraically:

Steps:

1. State restrictions on domain
2. Multiply both sides by the Lowest Common Denominator and simplify where necessary.
3. Expand and simplify
4. Set one side to zero and solve.

Example 1: Solve algebraically
a.) $\frac{x+2}{x-3}=x-6$
b.) $x+\frac{6}{x+2}=5$
c.) $\frac{x-2}{x+3}-1=\frac{3}{x+2}$
d.) $\frac{x+5}{x+8}=1+\frac{6}{x+1}$
e.) $\frac{x+3}{2 x-6}=2 x-\frac{x}{3-x}$

B. Graphically:

Method 1: Finding roots/x-intercept
Steps:

1. Set one side to zero
2. Set equation as y_{1}.
3. Use roots to solve the x-intercepts
4. Repeat for each root.

Method 2: Finding intersections
Steps.

1. Set $\mathrm{y}_{1}=$ Left-hand side
2. Set $\mathrm{y}_{2}=$ Right-hand side
3. Find the intersection point
4. Repeat for each point.

Example 2:

Solve graphically: Express answers to the nearest hundredth.
a.) $x+\frac{6}{x+2}=5$
b.) $\frac{14}{x}=x-5$
c.) $2-\frac{3 x}{2}=\frac{1+4 x-x^{2}}{4 x+10}$

