9.2 Analysing Rational Functions

Non-permissible values for rational functions are located for all x-values that make the denominator equal to 0 . The two types of non-permissible values that we will look at are:

1. Vertical asymptotes: the graph approaches large y-values as the x-values approach the vertical asymptote
2.Points of discontinuity (hole): an ordered pair (x, y) where the graph is not continuous; results in a single point missing from the graph (represented by an open circle).
-occurs when the rational function is simplified by dividing the numerator and denominator by a common factor that involves a variable

Example 1: Graph the following rational function. Analyze the behavior near the non-permissible value
a.)

$$
f(x)=\frac{x^{2}-5 x-6}{x+1}
$$

Characteristic	Equation:
	$f(x)=\frac{x^{2}-5 x-6}{x+1}$
Non-Permissible value	
Behaviour Near each non-permissible value	
Domain	
Range	

b.)

$$
g(x)=\frac{x^{2}+2 x}{4+2 x}
$$

Characteristic	Equation:
Non-Permissible value	
Behaviour Near each non-permissible value	
Domain	
Range	

c.)

$$
h(x)=\frac{x^{2}+5 x-6}{x^{2}-2 x+1}
$$

Characteristic	Equation:
Non-Permissible value	
Behaviour Near each non-permissible value	$\frac{x^{2}+5 x-6}{x^{2}-2 x+1}$
Domain	
Range	

d.)

$$
k(x)=\frac{x^{2}-9}{x^{2}+5 x+6}
$$

Characteristic	Equation:
	$k(x)=\frac{x^{2}-9}{x^{2}+5 x+6}$
Non-Permissible value	
Behaviour Near each non-permissible value	
Domain	
Range	

Horizontal Asymptotes of Rational Functions:

Given $f(x)=\frac{g(x)}{h(x)}$ and m is the degree of the numerator (top) and n is the degree of the denominator (bottom). In other words:

$$
f(x)=\frac{g(x)}{h(x)}=\frac{a x^{m}+\cdots+a_{0}}{b x^{n}+\cdots+b_{0}}
$$

1. If $m<n$, then $\mathrm{y}=0$ is a horizontal asymptote.
2. If $m=n$, then $y=\frac{a}{b}$ (ratio of the leading coefficients) is the horizontal asymptote.
3. If $m>n$, then there is a slant or oblique asymptote (which is not covered in this course).

Example 2: Determine the horizontal asymptote of the rational functions:
a.) $f(x)=\frac{4 x-6}{3 x^{2}+4 x-2}$
b.) $g(x)=\frac{6-x^{2}}{3 x^{2}-4 x+4}$
c.) $h(x)=\frac{x^{3}-3 x-2}{3 x^{2}}$

Intercepts of Rational Functions:

To determine the y-intercept of a rational function, set the x-value to 0 .
To determine the x-intercept of a function, set the y-value to 0 ; in general, we can set the numerator to 0 after factoring and reducing to solve for the x-intercepts.

Example 2: Determine the x and y-intercepts:

a.) $y=\frac{4 x^{2}-6 x-4}{x^{2}+x-20}$
b.) $y=\frac{x^{2}+x-2}{x^{2}+19 x-20}$

Example 3:

Determine the equation of the following rational functions:

