8.1 Understanding Logarithms

Exponential Form:

$$c^{y} = x$$

Logarithmic Form:

$$\log_c x = y$$

Example 1: Rewrite in exponential form

a.) $\log_5 25 = 2$

b.) $\log_x 10 = 3$

Example 2: Rewrite in logarithmic form:

a.) 2⁵ = 32

b.) $5^c = 20$

Example 2: Evaluate by changing the base

a.) log₇ 49

b.) log₂₃ 1

c.) $\log_{3} \sqrt[5]{81}$

d.) $\log_2 8\sqrt{32}$

*If the base for the log is unwritten, we assume that the base is 10.

e.) log 0.0001

f.) log 100

Basic Log Rules:

 $log_c 1 = 0 \qquad \text{since } c^0 = 1$ $log_c c^x = x \qquad \text{since } c^x = c^x$ $c^{log_c x} = x \qquad \text{since } log_c x = log_c x$

Example 2: Solve for x by changing into exponential form:

a.) $\log_5 x = -3$

b.) $\log_{16} x = -\frac{1}{4}$

c.) $\log_x 9 = \frac{2}{3}$

d.) $\log_3 9 = x$

Example 3:Graphing logarithmic functions

Graph $y = 2^x$

a.) State the inverse of this function:

b.) Sketch the graph of $y = 2^x$ and its inverse: Identify

-domain and range

-x-intercept

-y-intercept

-equation of asymptotes

