7.3 Solving Exponential Functions:

Review of Exponential Rules

1. $b^{0}=1$
2. $b^{x} \cdot b^{y}=b^{x+y}$
3. $\frac{b^{x}}{b^{y}}=b^{x-y}$
4. $\left(b^{x}\right)^{y}=b^{x y}$
5. $b^{-x}=\frac{1}{b^{x}}$
6. $\left(\frac{b}{a}\right)^{-x}=\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$
7. $(a b)^{x}=a^{x} b^{x}$
8. $a^{x}=a^{y}$ if and only if $x=y$

Example 1: Write each expression as a power with base 2:

a.) 4^{3}
b.) $\frac{1}{8}$
c.) $8^{\frac{2}{3}}(\sqrt{16})^{3}$

Example 2: Simplify by changing the base
a.) $\left(4^{x}\right)^{2+x}\left(32^{x}\right)^{-x}$
b.) $\frac{9^{x}\left(27^{x-3}\right)}{243^{x+1}}$

Solving Exponential Equations

Exponential Equations can be solved if the bases are the same on both sides. Otherwise, a graphing calculator can be used.

Example 3: Solve
a.) $4^{x+2}=64^{x}$
b.) $3^{3 x+4}=81^{x+2}$
c.) $4^{x+2}=8^{2 x-3}$
d.) $8(8)^{x}=2$

Example 4:

a.) (Algebraically) A colony of 20000 ants grows by 50% every hour. After how many hours will it take the colony to reach 151875 ants?
b.) (Graphing calculator) Determine how long $\$ 1000$ needs to be invested in an account that earns 8.3% compounded semi-annually (once every 6 months) before it increases to \$1500.

