7.3 Solving Exponential Functions:

Review of Exponential Rules

1.
$$b^{0} = 1$$

2. $b^{x} \cdot b^{y} = b^{x+y}$
3. $\frac{b^{x}}{b^{y}} = b^{x-y}$
4. $(b^{x})^{y} = b^{xy}$
5. $b^{-x} = \frac{1}{b^{x}}$
6. $\left(\frac{b}{a}\right)^{-x} = \left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}}$
7. $(ab)^{x} = a^{x}b^{x}$
8. $a^{x} = a^{y}$ if and only if $x = y$

Example 1: Write each expression as a power with base 2:

a.) 4³

b.)
$$\frac{1}{8}$$

c.) $8^{\frac{2}{3}}(\sqrt{16})^3$

Example 2: Simplify by changing the base

a.) $(4^x)^{2+x} (32^x)^{-x}$

b.)
$$\frac{9^{x}(27^{x-3})}{243^{x+1}}$$

Solving Exponential Equations

Exponential Equations can be solved if the bases are the same on both sides. Otherwise, a graphing calculator can be used.

Example 3: Solve

a.) $4^{x+2} = 64^x$

b.) $3^{3x+4} = 81^{x+2}$

c.) $4^{x+2} = 8^{2x-3}$

d.) $8(8)^x = 2$

Example 4:

a.) (Algebraically) A colony of 20000 ants grows by 50% every hour. After how many hours will it take the colony to reach 151875 ants?

b.) (Graphing calculator) Determine how long \$1000 needs to be invested in an account that earns 8.3% compounded semi-annually (once every 6 months) before it increases to \$1500.