7.2 Transformations of Exponential Functions

Recall from chapter 1: $y=f(x) \rightarrow y=a f(b(x-h))+k$
Where
a affects the vertical expansion/compression/reflection
b affects the horizontal expansion/compression/reflection
h affects the horizontal translation
k affects the vertical translation

We can apply the transformations to exponential functions:

$$
f(x)=c^{x} \rightarrow f(x)=a(c)^{b(x-h)}+k
$$

Example 1:

Sketch the graph of $y=2^{x}$ and $y=3 \cdot 2^{x-1}$
i.) Describe the transformations on the graph of $y=2^{x}$
ii.) State the domain/range
iii.) State the asymptote
iv.) Find the intercepts

Try:
Sketch the graph of $y=\left(\frac{1}{2}\right)^{x}$ and $y=\left(\frac{1}{2}\right)^{x+1}-4$
i.) Describe the transformations on the graph of $y=\left(\frac{1}{2}\right)^{x}$
ii.) State the domain/range
iii.) State the asymptote
iv.) Find the intercepts

Applications:

Exponential equations are found in the form:
$P=P_{0} c^{x}$ where P is the final amount P_{0} is the initial amount c is the rate of growth or decay

Specific Examples:

1. Compound Interest:

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

$A=$ final
$P=$ principle, or initial amount
$r=$ rate of yearly interest
$\mathrm{n}=$ number of times yearly interest is compounded
$\mathrm{t}=$ time (in years)

Example 2:

How much more would you earn in two years if you compounded daily compared to monthly with an initial investment of $\$ 1000$ and an annual interest rate of 5% ?
2. Half Life:

$$
A=A_{0}(c)^{\frac{t}{T}}
$$

$A=$ final
$A_{0}=$ initial amount
$c=$ growth or decay value (e.g., half life use $\frac{1}{2}$)
T= time of growth or decay (e.g., half-life time)
$t=$ time

Example 3:

1. An element has a half-life of 30 years. If 5.0 mg of this element decays over a period of 90 years, how many mg of this element would remain?
2. An element has a half-life of 29 hours. how many mg of the element will remain after 46 hours?
