### 7.2 Absolute Value Functions

Graph an Absolute Function of the form $y=|a x+b|$

## Example 1:

Given $y=|3 x+4|$
a.) Find $y$-intercept $(x=0)$ and $x$-intercept $(y=0)$
b.) Use table of values to sketch a graph.

c.) State the domain and range
d.) An invariant point is a point that remains unchanged after a transformation: Compare the graph of $y=3 x+4$ and $y=|3 x+4|$, where is the invariant point?

Does this apply for all absolute value functions in the form $y=|a x+b|$ ?
e.) Express as a piecewise function

Recall:

$$
f(x)=|x|=\left\{\begin{array}{cl}
x, & \text { if } x \geq 0 \\
-x, & \text { if } x<0
\end{array}\right.
$$

Look at the graphs of $y=|3 x+4|$ and $y=3 x+4$, which points are stay the same and which parts do we need to apply a negative sign to simplify?

## Graph an Absolute Value quadratic function:

## Example 2:

Given $y=\left|x^{2}-6 x+9\right|$
a.) Sketch the function without the absolute values.

b.) On the same graph, which parts change from a negative value to a positive value? Which parts remain positive? (*recall that we are only looking at the $y$-values/height of the graph)
c.) Express the function as a piecewise function:

## Example 3:

The graph below is $y=f(x)$, sketch $y=|f(x)|$


HW: p 375 1-15

