7.1 Characteristics of Exponential Functions

An exponential function can be written in the form
$y=c^{x}$ where $c>0, c \neq 1$
Sketch the following graphs.
i. State the domain and range
ii. State the x-intercept
iii. State the y-intercept
iv. Asymptotes
a.) $y=2^{x}$

b.) $y=\left(\frac{1}{2}\right)^{x}$

Applications of Exponential Functions:
When $c>1$, the function represents an exponential growth

Examples of exponential growths:

Doubling rate ($\mathrm{c}=2$)
Twofold growth ($\mathrm{c}=2$)
Increase by $10 \%(c=1+0.10=1.1)$

When $0<c<1$, the function represents an exponential decay
Examples of exponential decay:
Half-life ($\mathrm{c}=\frac{1}{2}$)
Decrease by 10\% ($c=1-0.10=0.9$)

Example 1:

A radioactive substance has a half-life of 1 day (the substance decays to half the original amount after 1 day). Plot the mass of the substance remaining if the original amount was 1 gram.
a.) Determine the domain and range.
b.) Write the exponential decay model (equation) that relates the mass of the substance.
c.) Using a graphing calculator, determine how many days it would take for the substance to decay to $1 / 50^{\text {th }}$ of its original mass.

