4.3 Trigonometric Ratios

Coordinates in Terms of Primary Trigonometric Ratios

For any unit circle, given $P(\theta) = (x, y)$

For any unit circle with radius r:

Reciprocal Trigonometric Ratios

By definition:

Example 1: Determine the Trigonometric Ratios for Angles in the Unit Circle

The point $A(-\frac{6}{7}, \frac{\sqrt{13}}{7})$ lies on the terminal arm of an angle θ in standard position and the unit circle.

Determine the values of the six trigonometric ratios for θ ; express in lowest terms and rationalize.

Example 2: Determine the exact value of each

a.)
$$\cos \frac{7\pi}{6}$$

b.) $\sin(-\frac{5\pi}{3})$

c.) cot 180°

d.) csc 315°

To determine the reference angle, we use the inverse trigonometric function (sin⁻¹, cos⁻¹, tan⁻¹). Use the domain clues to determine which unit the answer should be in.

Example 3: Determine the measure of all angles that satisfy the following.

a.) $\cos \theta = 0.2837, 0 \le \theta < 2\pi$

b.) $\sin \theta = -0.9135, 0^{\circ} \le \theta < 360^{\circ}$

Example 4: Without a calculator, determine the exact value of all angles that satisfy the following.

a.)
$$\tan \theta = \frac{1}{\sqrt{3}'} - 2\pi \le \theta < 2\pi$$

b.)
$$\csc \theta = -\frac{2\sqrt{3}}{3}, 0 \le \theta < 2\pi$$

Try: Find the angle in the domain of $0 \le \theta < 2\pi$.

a.) sec $\theta = -7.8147$

b.) No calculator: $\sin \theta = -0.5$

Try: The point A(12, -5) lies on the terminal arm of an angle θ in standard position. Find the exact value of each trigonometric ratio for θ (sin, cos, tan, sec, csc, cot)