4.3 Connecting f^{\prime} and $f^{\prime \prime}$ with the Graph of f

Example 1: Use the first derivative test to find all the local and absolute extrema. Identify the intervals on which f is increasing and decreasing.
a.) $f(x)=x^{3}-12 x-5$
b.) $f(x)=\left(x^{2}-3\right) e^{x}$

Concavity:

The graph concaves up if y^{\prime} is increasing on an interval:

The graph concaves down if y^{\prime} is decreasing on an interval:

Inflection Point:

A point where the function has a tangent line and where the concavity changes.

For the graph of $y=f(x)$: When
a.) $y^{\prime \prime}>0$ the graph is concaving up
b.) $y^{\prime \prime}<0$ the graph is concaving down
c.) $y^{\prime \prime}=0$ there may be an inflection point

Example 3: A particle is moving along a horizontal line with the position:

$$
s(t)=2 t^{3}-14 t^{2}+22 t-5, t \geq 0
$$

a.) Find the velocity and acceleration.
b.) Determine the concavity of the function.

Example 3: Determine the concavity and possible inflection points for the function:

$$
f(x)=x^{3}-3 x-24 x+5
$$

Second derivative Test for Local Extrema

1. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at $x=c$
2. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at $x=c$

Example 4 Find the extreme values of $f(x)=x^{3}-12 x-5$

Example 5: Sketch a possible graph of f given $f^{\prime}(x)=4 x^{3}-12 x^{2}$

