4.2 The Unit Circle

Review:

Special Triangles

Unit Circle

Equation of a Circle of radius, r, centered around the origin

Example 1: Find the coordinates for all points on the unit circle that satisfy the following conditions. Draw a diagram each time.
a.) the x coordinate is 5
i. Possible quadrants?
ii. Equation of unit circle
iii. Put in known information
iv. Solve for the variable
b.) the x coordinate is -0.3
c.) the x coordinate is $\frac{4}{5}$

The Relationship between θ and a point (x, y)

Notation: $P(\boldsymbol{\theta})=(\boldsymbol{x}, \boldsymbol{y})$ [This is only found in this textbook and you are unlikely to encounter this notation elsewhere.] This is a relationship between arc length $\boldsymbol{\theta}$ of a central angle in the unit circle to the co-ordinates, (\mathbf{x}, \mathbf{y}) on the terminal arm and arc of unit circle.

Some of the points on the unit circle correspond to exact values of the special angles, $\frac{\pi}{3}, \frac{\pi}{4}$, and $\frac{\pi}{6}$, learned last year.

Example 2: Find
a) $P\left(\frac{5 \pi}{6}\right)$
i. Draw it
ii. Find the reference angle
iii. Drop perpendicular to x axis
iv. Label sides (careful of the sign)
v. State point
b.) $P\left(\frac{4 \pi}{3}\right)$
c.) $P\left(\frac{-3 \pi}{4}\right)$

Example 3 : Find a measure for the central angle θ in the interval $0 \leq \theta<2 \pi$ such that $P(\theta)$ is the given point.
a.) $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$

Draw the unit circle
Plot point
Draw the triangle
Find angle
b.) $\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$
c.) $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$

