4.2 The Unit Circle

Review:

Special Triangles

Unit Circle

Equation of a Circle of radius, r, centered around the origin

Example 1: Find the coordinates for all points on the unit circle that satisfy the following conditions. Draw a diagram each time.

- a.) the x coordinate is 5
- i. Possible quadrants?
- ii. Equation of unit circle
- iii. Put in known information
- iv. Solve for the variable

b.) the x coordinate is -0.3

c.) the x coordinate is $\frac{4}{5}$

The Relationship between θ and a point (x, y)

Notation: $P(\theta) = (x, y)$ [This is only found in this textbook and you are unlikely to encounter this notation elsewhere.] This is a relationship between arc length θ of a central angle in the unit circle to the co-ordinates, (x, y) on the terminal arm and arc of unit circle.

Some of the points on the <u>unit circle</u> correspond to exact values of the special angles, $\frac{\pi}{3}$, $\frac{\pi}{4}$, and $\frac{\pi}{6}$, learned last year.

Example 2: Find

a)
$$P\left(\frac{5\pi}{6}\right)$$

i. Draw it

- ii. Find the reference angle
- iii. Drop perpendicular to x axis
- iv. Label sides (careful of the sign)
- v. State point

b.) $P\left(\frac{4\pi}{3}\right)$

c.) $P\left(\frac{-3\pi}{4}\right)$

Example 3: Find a measure for the central angle θ in the interval $0 \le \theta < 2\pi$ such that $P(\theta)$ is the given point.

a.) $(\frac{\sqrt{3}}{2}, \frac{1}{2})$

Draw the unit circle Plot point Draw the triangle

Find angle

b.) $(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$

c.) $(\frac{1}{2}, -\frac{\sqrt{3}}{2})$