4.2 Mean Value Theorem

MEAN VALUE THEOREM
Let f be differentiable on (a, b) and continuous on $[a, b]$. Then there is at least one point c in (a, b) where

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

In other words:

There is a tangent line between a and b at c where the slope is parallel to the slope of the secant line from a to b.

Graphically:

Example 1:

Let $f(x)=x^{3}+1$. Show that $f(x)$ satisfies the hypotheses of the Mean Value Theorem on the interval $[1,2]$ and find all values c in this interval whose existence is guaranteed by the theorem.

Rolle's Theorem

If $f(x)$ meets these conditions

1) continuous on $[a, b]$
2) differentiable on (a, b)
3) $f(a)=f(b)$

Then, there is a point c on the interval $[a, b]$ where $f^{\prime}(x)=0$

Increasing and Decreasing Functions

Let f be continuous on $[a, b]$ and differentiable on (a, b)
If $f^{\prime}(x)>0$ at each point of (a, b) then f increases on $[a, b]$
Graphically:

If $f^{\prime}(x)<0$ at each point of (a, b) then f decreases on $[a, b]$
Graphically:

First Derivative Test for Local Extrema

Let $f^{\prime}(c)=0$ or $f^{\prime}(c)$ is undefined, then

1) Local Maximum occurs where the sign of $f^{\prime}(x)$ changes from positive to negative at $x=c$
2) Local minimum occurs where the sign of $f^{\prime}(x)$ changes from negative to positive at $x=c$

You must discuss the sign change of the slope when giving answers for local extrema.

Example 2:

Find the local extrema for $g(x)=x^{4}-4 x^{3}-8 x^{2}-1$

Example 3: Use a sign chart to determine the local max/mins
$g^{\prime}(x)=\frac{(2 x-3)^{2}(x+3)(x-1)}{x+6}$

