4.1 Angles and Angle Measures

Recall:

Angles in standard position (on a coordinate plane):

Degree Measures:

One rotation is 360°. Angles measured in the counter clockwise direction are positive. Angles measured in the clockwise direction are negative.

Co-terminal Angles:

Angles with the same terminal arm are co-terminal: they differ by a factor of 360°.
ie. an angle, θ_{1} is co-terminal with θ_{2} if they differ by a factor of 360°.

Example 1: Find a co-terminal angle, $\theta: 0 \leq \theta<360^{\circ}$
a.) 1850°
b.) -2000°

Radian Measure:

An arc of a circle with the same length as the radius of that circle corresponds to an angle of 1 radian. A full circle corresponds to an angle of 2π radians.

1 rotation is 360° OR 2π radians:
half a rotation is 180° or π radians:

Conversion from Degrees to Radians:

$$
\text { degrees } \times \frac{\pi}{180^{\circ}}=\text { radians }
$$

Conversion from Radian to Degrees:

$$
\text { radians } \times \frac{180^{\circ}}{\pi}=\text { degrees }
$$

Note: You can cancel out units to remember which equation to use.

Example 2:

i. Convert from radians to degrees:
a.) $\frac{3 \pi}{2}$
b.) $\frac{11 \pi}{6}$
c.) 2.5
ii. Convert from degrees to radians:
a.) 270°
b.) 120°
c.) 348°

Note: the answer is understood to be in radians if no symbol is placed after the numerical value.

Try:

Convert from radians to degrees or degrees to radians:
a.) 60°
b.) 30°
C.) $\frac{3 \pi}{4}$
d.) 35

In Standard Position

Coterminal Angles in Radians

Two angles are coterminal if they differ by 360° OR \qquad in radians.
θ_{1} is co-terminal with θ_{2} if:
$\theta_{1}=\theta_{2}+360^{\circ} \cdot n, \mathbf{O R}$
$\theta_{1}=\theta_{2}+$ \qquad - n, where $n \in Z$

Example 3: Determine all co-terminal angles to θ in the given ranges, and state the quadrant where the terminal arm lies
а.) $\theta=-\frac{9 \pi}{4}, 0 \leq \theta<4 \pi$
b.) $\theta=\frac{19 \pi}{6},-4 \pi \leq \theta<-2 \pi$
c.) $\theta=-\frac{7 \pi}{3},-2 \pi \leq \theta<2 \pi$

Try: Find the co-terminal angles and the quadrants:
a.) $\theta=-\frac{5 \pi}{4}, 0 \leq \theta<2 \pi$
b.) $\theta=\frac{11 \pi}{2},-4 \pi \leq \theta<0$
c.) $\theta=\frac{\pi}{6}$

Arc Length

$a=r \theta, \theta$ is in radians

Example 4:

a.) Determine the arc length of a circle with radius 10 cm and central angle of $\frac{\pi}{3}$
b.) Determine the arc length of a circle with diameter 12 m and central angle of 40°

Try:

What is the degree measure of an angle θ opposite an arc of 25 m in a circle of diameter 20?

