3.9 Derivatives of Exponential and Logarithmic Functions

A logarithm is an exponent

$$
\log _{a} x=y \quad a^{y}=x
$$

Laws of Logarithms

1.) $\log _{\mathrm{a}} n m=\log _{a} n+\log _{a} m$
2.) $\log _{\mathrm{a}}\left(\frac{n}{m}\right)=\log _{a} n-\log _{a} m$
3.) $\log _{a} n^{m}=m \log _{a} n$
4.) $\log _{a} a^{x}=x$
5.) $a^{\log _{a} x}=x$
6.) $\log _{\mathrm{a}} 1=\log _{a} a^{0}=0$

Natural Logs
$\log _{e} x=\ln x$ is the natural \log
Derivative of $y=\ln x$

Example 3

Find the derivative of each function:
a) $y=\ln x^{2}$
b) $y=\ln \left(\frac{3}{x}\right)$
c) $y=\ln (3 x+3)$
d) $y=\ln (\sin x)$
e) $y=(\ln x)^{2}$
f) $y=x \ln x$
g) $y=\ln \ln x$

Derivative of $y=a^{x}$

Derivative of $y=\log _{a} x$

Example 4: Derive

$$
y=\frac{(x+3)^{5} \cdot \sqrt[8]{x+6} \cdot\left(x^{2}-9\right)^{40}}{\left(9 x^{2}+6\right)^{2}}
$$

