3.8 Derivatives of Inverse Functions and Inverse Trigonometric Functions

Example 1: Using implicit differentiation.

- Let $f(x) = x^5 + 2x 1$. a) Since the point (1,2) is on the graph of f, (2, 1) is on the graph of f^{-1} .
- b) Determine $\frac{df^{-1}}{dx}(2)$

Derivative of Inverse Functions:

$$\frac{d}{dx}[f^{-1}(x)] = \frac{1}{f'[f^{-1}(x)]}$$

(note: this only works if the inverse exists)

Example 2 Let $f(x) = x^3 + x^2 + 1$ a) f'(x)

b) Find $f^{-1}(3)$ and $\frac{d}{dx}(f^{-1}(3))$

Derivative of the Arcsine Function

Consider the function $y = \sin x$ What is the inverse of this function:

What is the domain and range (sketch)?

Determine the derivative of the inverse sine function:

 $\frac{d}{dx}(\arcsin x) = \frac{d}{dx}(\sin^{-1} x) =$

Example 3 Determine: $\frac{d}{dx}(\sin^{-1}x^2)$

Derivative of the Arctangent Function

Consider the function $y = \tan x$ What is the inverse of this function:

What is the domain and range?

Determine the derivative of the inverse tangent function:

 $\frac{d}{dx}(\arctan x) = \frac{d}{dx}\tan^{-1}x$

Example 4

A particle moves along a line so that its position at any time $t \ge 0$ is $s(t) = \tan^{-1}(\sqrt{t})$. What is the velocity of the particle when t = 16?

Example 5

a) Find an equation for the line tangent to the graph of $y = \tan x$ at the point $\left(-\frac{\pi}{4}, -1\right)$.

b) Find an equation for the line tangent to the graph of $y = \tan^{-1} x$ at the point $\left(-1, -\frac{\pi}{4}\right)$

Example 6 Find $\frac{dy}{dx}$ for $y = \sin \frac{1}{x}$

There are **other inverse trigonometric functions**. Here are their derivative formulas:

$$\frac{d}{dx} \sec^{-1} x =$$
$$\frac{d}{dx} \cos^{-1} x =$$
$$\frac{d}{dx} \cot^{-1} x =$$
$$\frac{d}{dx} \csc^{-1} x =$$