3.8 Derivatives of Inverse Functions and Inverse Trigonometric Functions

Example 1: Using implicit differentiation.

$$
\text { Let } f(x)=x^{5}+2 x-1
$$

a) Since the point $(1,2)$ is on the graph of $f,(2,1)$ is on the graph of f^{-1}.
b) Determine $\frac{d f^{-1}}{d x}(2)$

Derivative of Inverse Functions:

$$
\frac{d}{d x}\left[f^{-1}(x)\right]=\frac{1}{f^{\prime}\left[f^{-1}(x)\right]}
$$

(note: this only works if the inverse exists)

Example 2

Let $f(x)=x^{3}+x^{2}+1$
a) $f^{\prime}(x)$
b) Find $f^{-1}(3)$ and $\frac{d}{d x}\left(f^{-1}(3)\right)$

Derivative of the Arcsine Function

Consider the function $y=\sin x$ What is the inverse of this function:

What is the domain and range (sketch)?

Determine the derivative of the inverse sine function:

$$
\frac{d}{d x}(\arcsin x)=\frac{d}{d x}\left(\sin ^{-1} x\right)=
$$

Example 3

Determine: $\frac{d}{d x}\left(\sin ^{-1} x^{2}\right)$

Derivative of the Arctangent Function

Consider the function $y=\tan x$ What is the inverse of this function:

What is the domain and range?

Determine the derivative of the inverse tangent function:
$\frac{d}{d x}(\arctan x)=\frac{d}{d x} \tan ^{-1} x$

Example 4

A particle moves along a line so that its position at any time $t \geq 0$ is $s(t)=\tan ^{-1}(\sqrt{t})$. What is the velocity of the particle when $t=16$?

Example 5

a) Find an equation for the line tangent to the graph of $y=\tan x$ at the point $\left(-\frac{\pi}{4},-1\right)$.
b) Find an equation for the line tangent to the graph of $y=\tan ^{-1} x$ at the point $\left(-1,-\frac{\pi}{4}\right)$

Example 6

Find $\frac{d y}{d x}$ for $y=\sin \frac{1}{x}$

There are other inverse trigonometric functions. Here are their derivative formulas:

$$
\begin{aligned}
\frac{d}{d x} \sec ^{-1} x & = \\
\frac{d}{d x} \cos ^{-1} \boldsymbol{x} & = \\
\frac{d}{d x} \cot ^{-1} \boldsymbol{x} & = \\
\frac{d}{d x} \csc ^{-1} \boldsymbol{x} & =
\end{aligned}
$$

