3.7 Implicit Differentiation

Implicit differentiation is a special case of the chain rule for derivatives. Rather than rewriting a function in the form $y=f(x)$, the both sides of the equation are derived with respect to the same variable

Example 1

Find $\frac{d y}{d x}$ if $y^{2}=x$ using implicit differentiation. What does this mean graphically? Consider the slope of the tangent lines at points $(4,2)$ and $(4,-2)$, on the curve $y^{2}=x$

Example 2

Find the slope of the circle $x^{2}+y^{2}=25$ at the point $(3,-4)$

Example 3

Find the tangent and normal to the ellipse $x^{2}-x y+y^{2}=7$ at the point $(-1,2)$

Example 4

Show that the slope $\frac{d y}{d x}$ is defined at every point on the graph of $2 y=x^{2}+\sin y$

Example 5

Find $\frac{d y}{d x}$ if
a) $x \sin y=\cos (x+y)$
b) $6 x^{2}+3 x y+x^{2} y-6 y=0$

Example 6

Find $\frac{d^{2} y}{d x^{2}}$ if $2 x^{3}-3 y^{2}=8$

Try:

Find the slope of the tangent line of the cardioid:
$x^{2}+y^{2}=\left(2 x^{2}+2 y^{2}-x\right)^{2}$ at $(0,1 / 2)$

