Implicit Differentiation 3.7

Implicit differentiation is a special case of the chain rule for derivatives. Rather than rewriting a function in the form y = f(x), the both sides of the equation are derived with respect to the same variable

Example 1 Find $\frac{dy}{dx}$ if $y^2 = x$ using implicit differentiation.

What does this mean graphically? Consider the slope of the tangent lines at points (4, 2) and (4, -2), on the curve $y^2 = x$

Example 2

Find the slope of the circle $x^2 + y^2 = 25$ at the point (3, -4)

Example 3 Find the tangent and normal to the ellipse $x^2 - xy + y^2 = 7$ at the point (-1, 2)

Example 4 Show that the slope $\frac{dy}{dx}$ is defined at every point on the graph of $2y = x^2 + \sin y$

Example 5 Find $\frac{dy}{dx}$ if a) $x \sin y = \cos(x + y)$

b)
$$6x^2 + 3xy + x^2y - 6y = 0$$

Example 6 Find $\frac{d^2y}{dx^2}$ if $2x^3 - 3y^2 = 8$

Try:

Find the slope of the tangent line of the cardioid: $x^2 + y^2 = (2x^2 + 2y^2 - x)^2$ at $(0, \frac{1}{2})$