3.4 Equations and Graphs of Polynomial Functions

Without the help of a graphing calculator, a polynomial function can be sketched with the following characteristics:
a.) Degree
b.) Sign of leading coefficient
c.) In a factored form

- x-intercepts (zeros)
- multiplicity
d.) y-intercept

Multiplicity

The multiplicity of a function is the number of times a zero is repeated:
Example 1: Determine the zeros and the multiplicities of the corresponding zeros for the function. Then determine the degree.
$f(x)=(x-1)^{2}(x-5)(x+2)^{3}$

There are three types of multiplicities at $x=a$

Multiplicity of 1:

The graph passes through the point.

Even multiplicity:

The graph bounces at the point; the higher the multiplicity the wider it appears.

Odd multiplicity:

The graph passes through the point but is similar to a $y=x^{3}$ graph.

Example 2: Sketch the following:

State the
i.) Degree
ii.) Leading Coefficient
iii.) End behaviours
iv) zeros
v.) y-intercept
vi.) Regions where the graph is positive
vii.) Regions where the graph is negative
a.) $y=(x-1)(x+2)(x+3)^{2}$
b.) $y=-(2 x-3)^{2}(x+2)^{3}$
c.) $y=-2 x^{3}+6 x-4$
d.) $y=x^{4}-3 x^{3}-6 x^{2}+28 x-24$

Example 2: Find a possible equation for the following graphs; determine the least possible degree.

