3.3 The Factor Theorem

Factor Theorem:

If a polynomial $P(x)$ is divided by $(x-a)$ and the remainder is zero, then $(x-a)$ is a factor of $P(x)$.
In other words, if $P(a)=0$, then $(x-a)$ is a factor of $\mathrm{P}(\mathrm{x})$.

Example:
Does $P(x)=x^{3}+2 x^{2}+4 x+8$ have a factor of $(x+2)$?

Rational Root Theorem (Possible Roots):

The possible roots of polynomial $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x^{1}+a_{0}$ are :

Factors of a_{0}
Factors of a_{n}

Example 1:

$2 x^{3}-5 x-9$ has possible roots:

Factors of $=$

Factors of

Factoring Polynomials:

To factor a polynomial, we must use the rational root theorem and factor theorem to determine the roots.
Using the possible roots, we can try to find a root that satisfies the factor theorem; in other words, find a value of "a" such that $P(a)=0$.

Steps: Factoring (or solving) an $n>2$ degree polynomial.

1. Find all possible roots
2. Find a root that satisfies $\mathrm{P}(\mathrm{a})=0$; start testing with smaller values.
3. Synthetically divide the factor.
4. Repeat until completely factored; do not forget to include all roots.
*Note: Factors can always be repeated!

Example 2:
Factor completely:
a.) $x^{3}-2 x^{2}-13-10$
b.) $2 x^{3}-7 x^{2}-7 x+12$
c.) $x^{3}-3 x^{2}+3 x-1$
d.) $2 x^{3}-5 x^{2}-4 x+3$
e.) $x^{4}-5 x^{3}+2 x^{2}+20 x-24$

Example 3:
Solve by factoring:
a.) $x^{4}-3 x^{3}+x^{2}+3 x-2=0$
b.) $x^{4}+4 x^{3}+2 x^{2}-5 x-2=0$

Examples 4:

1. A box is constructed such that the length is three times the width and the height is 3 cm longer than the width, with a volume of $600 \mathrm{~cm}^{3}$. What are the dimensions of the box?
2. The product of three consecutive odd integers is 105 . What are the numbers?

P 133: 1-16

