3.2 Investigating Quadratic Functions in Standard Form

Vertex form:

$$
y=a(x-p)^{2}+q
$$

Standard form:

$$
y=a x^{2}+b x+c
$$

a determines the shape and direction of the graph
b influences the position of the graph
c determines the y-intercept of the graph (when $x=0$)

Memorize these:

To determine the vertex in standard form:
${ }^{* * *} p=-\frac{b}{2 a}$
$q=c-a p^{2} \quad$ (Can be determined by substituting the p-value into x of standard form to find the y value of the vertex)

Example 1:

For each function, identify the following:
-coordinates of vertex
-max/min value
-equation of axis of symmetry
$-x$ and y intercepts
-domain/range
a.) $f(x)=x^{2}$
b.) $f(x)=x^{2}-2 x$
c.) $f(x)=-x^{2}+2 x+8$
d.) $f(x)=2 x^{2}-12 x+25$

Example 2: Modeling a real life problem

A farmer has 100 m of fencing available to build an enclosure for his cows. The enclosure only requires 3 sides of fencing, as the $4^{\text {th }}$ side is against the barn. Determine the dimensions of the enclosure that maximizes the area of the enclosure.

