3.1 Investigating Quadratic Functions in Vertex Form

Definitions:

Quadratic function:
-a polynomial function with degree of 2
-in the form: $f(x)=a x^{2}+b x+c$
Vertex:
-the lowest or highest point of the graph
-the y-value of the vertex is the minimum or maximum
Axis of Symmetry
-the vertical line that passes through the vertex
-the x-value of the vertex is the axis of symmetry

Vertex Form:

All parabolas can be written in the form:
$y=a(x-p)^{2}+q$

Try:
Effect of a in $f(x)=a x^{2}$ on the graph $f(x)=x^{2}$

1. Using a table of values, sketch the following functions on the same graph:

$$
\begin{gathered}
f(x)=x^{2} \\
f(x)=2 x^{2} \\
f(x)=\frac{1}{2} x^{2} \\
f(x)=-x^{2} \\
f(x)=-2 x^{2} \\
f(x)=-\frac{1}{2} x^{2}
\end{gathered}
$$

Effect of p in $f(x)=(x-p)^{2}$ on the graph $f(x)=x^{2}$
2. Using a table of values, sketch the following functions on the same graph:

$$
f(x)=x^{2}
$$

$$
\begin{aligned}
& f(x)=(x-2)^{2} \\
& f(x)=(x+1)^{2}
\end{aligned}
$$

Effect of q in $f(x)=x^{2}+q$ on the graph $f(x)=x^{2}$
3. Using a table of values, sketch the following functions on the same graph:

$$
\begin{gathered}
f(x)=x^{2} \\
f(x)=x^{2}+4 \\
f(x)=x^{2}-3
\end{gathered}
$$

Example 1:

Sketch the graphs of Quadratic Functions in Vertex form

Determine the following:
-vertex
-domain and range
-direction of opening
-equation of axis of symmetry
a.) $y=\frac{1}{2}(x-2)^{2}-4$
b.) $y=-3(x+1)^{2}+3$

