3.1 Characteristics of Polynomial Functions

A polynomial function is the addition or subtractions of terms that contain variables and constants.
$a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x^{1}+a_{0}$
Where $a_{n} \in \mathrm{R}, n \in Z^{+}$

Degree: the exponent to the highest power of x, which is n
Leading coefficient: the number in front of the highest power of x, a_{n}
Constant Term: the term without a variable, which is a_{0}. Also the value when $x=0$

Example 1:

Polynomial	Degree	Leading Coefficient	Name
$f(x)=3$			
$g(x)=\frac{2 x-5}{2}$			
$h(x)=-2 x^{2}+4 x-5$			
$j(x)=0.3 x^{3}+\sqrt{3} x+2$			
$k(x)=-\sqrt{5} x^{3}+4 x-5$			

Non-Polynomial	Reason
$f(x)=3 x^{-2}$	
$g(x)=2 \sqrt{x}$	
$h(x)=-2 x^{0.5}-5$	
$j(x)=\frac{2 x^{2}-5 x}{x}$	
$k(x)=\sqrt{-5} x^{3}-5$	

The end behaviour of a polynomial function is the y-value of the function as the x-value approaches $+\infty$ and $-\infty$.

The end behaviour is based on the leading term of the polynomial; specifically the degree and whether the leading coefficient is positive or negative.

Graphs of Polynomial Functions

1) Constant Function
2) Linear Function

Degree:
Number of intercepts:
End behaviour :

Domain:
Range:
3) Quadratic Function

Degree:
Number of intercepts:

End behaviour :

Domain:
Range:
Now

Degree:
Number of intercepts:
End behaviour :

Domain:
Range:
4) Cubic Function

Degree:
Number of intercepts:
End behaviour :

Domain:

Range:

Degree:
Number of intercepts:
End behaviour :

Domain:
Range:

Degree:
Number of intercepts:
End behaviour :
Domain:
Range:

What patterns do you notice about these graphs?

What happens if $a_{0}<0$?
Maximum - the largest y-value(s) for the function
Relative Maximum - largest y-value of all the points around it Absolute Maximum - largest y-value for all points in the function

Minimum - the smallest y-value
Relative Minimum - smallest y-value of all points around it Absolute Minimum - smallest y-value for all points in the function

Zeros - value(s) of x when $y=0$
where the graph hits the x axis
x-intercept
roots

Summary:

Polynomial functions can fit in three categories: constant, odd or even. They are continuous and are smooth (no edges).

Constant:

Odd:

Even:

HW p. 114 \# 1-4, 6, 7, 9, 11, C2

