2.3 The Sine Law

The Sine Law is used to find angles and sides of non-right angled triangles
-use the sine law when you are given one angle and its opposite side
le:

The Sine Law:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Example 1: Find the missing side length:
a.) (AAS)
b.) (ASA)

Example 2: Determining an Unknown Angle Measure

a.) In $\triangle A B C, \angle A=64^{\circ}, a=25.2 \mathrm{~cm}$ and $b=16.5 \mathrm{~cm}$. Determine the measure of $\angle B$ to the nearest degree
b.) In $\triangle A B C, \angle A=36^{\circ}, a=23 \mathrm{~cm}$ and $b=33 \mathrm{~cm}$. Determine the measure of $\angle C$ to the nearest degree

Ambiguous Case

-The ambiguous case can exist if you are given two sides and the opposite angle of one of those sides: SSA (side side angle)

There are three outcomes of the ambiguous case:
-no triangle exists
-one triangle exist
-two distinct triangles exist
To determine the ambiguous case, recall the following facts:

1. The sum of the angles is 180°
2. There can only be 1 obtuse angle
3. If $\sin \theta=a \rightarrow$ for any positive value of a, θ can be in Quadrant I or Quadrant II
4. The ratio of $\sin :-1 \leq \sin \theta \leq 1$

Example 3:

a.) In $\triangle A B C, a=20 \mathrm{~cm}$ and $\mathrm{c}=23 \mathrm{~cm}$ and $\angle A=30^{\circ}$. How many triangles can exist?
b.) In $\triangle A B C, a=7 \mathrm{~cm}$ and $\mathrm{c}=16 \mathrm{~cm}$ and $\angle A=30^{\circ}$. How many triangles can exist?
c.) In $\triangle A B C, a=16 \mathrm{~cm}$ and $\mathrm{c}=10 \mathrm{~cm}$ and $\angle A=30^{\circ}$. How many triangles can exist?

