2.3 Continuity

Continuity at a Point

Definition: Continuity at a Point

A function $y=f(x)$ is continuous at an interior point c of its domain if $\lim _{x \rightarrow c} f(x)=$ $f(c)$.
Endpoint: A function $y=f(x)$ is continuous at left endpoint \boldsymbol{a} or is continuous at right endpoint \boldsymbol{b} of its domain if $\lim _{x \rightarrow a^{+}} f(x)=f(a)$ or $\lim _{x \rightarrow b^{-}} f(x)=f(b)$, respectively.

Example 1: Finding Points of Continuity and Discontinuity

 Find the points of continuity of the following graph.

Removable vs Non-removable

f has a removable discontinuity if the function can be made continuous by redefining $f(c)$ (such as a hole)

An Analysis of Some Important Functions and Types of Discontinuity

a) continuous at $x=0$
b) removable discontinuity c) removable discontinuity

d) jump discontinuity
e) infinite discontinuity
f) oscillating discontinuity

Example 1: \quad Let $f(x)=\frac{x^{3}-7 x-6}{x^{2}-9}$
a.) Is the function continuous? If not, what kind of discontinuity is there?
b.) Can you create an extended function $\boldsymbol{g}(\boldsymbol{x})$ through a piecewise function that fills the hole of discontinuity?

Continuous Function:

A function is continuous on an interval if and only if it is continuous at every point of the interval.

A continuous function is one that is continuous at every point of its domain. A continuous function need not be continuous on every interval. For example, $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ is not continuous on $[-1,1]$ but is a continuous function.

Non-technical terms: a function is continuous if you can draw the function without lifting your pencil.

Intermediate Value Theorem for Continuous Functions

A function $y=f(x)$ that is continuous on an closed interval $[a, b]$, takes on every value between $f(a)$ and $f(b)$.

Example 2: Using the Intermediate Value Theorem

Is any real number exactly 1 less than its cube?

Example 3:

Let $\boldsymbol{f}(\boldsymbol{x})=\frac{x^{3}+\boldsymbol{x}}{\boldsymbol{x - 1}}$. Verify that the IVT applies to the interval [2.5, 4] and find the value of c guaranteed by the theorem if $\boldsymbol{f}(\boldsymbol{c})=\mathbf{6}$

