2.1 Radical Functions and Transformations:

Radical Notation:

 $\sqrt[n]{a}$ is the (principle) n^{th} root of a.

a is the radicand

n is the **index** (or order) of the radical

Example: Solve to 3 decimal places

1.)
$$x^2 = 4$$

2.)
$$x^5 = -8$$

3.)
$$x^{32} = -4$$

Graphing Radicals in the form $y = a \sqrt{b(x-c)} + d$

Note: Consider the key points of a $y = \sqrt{x}$ function

Х	у
0	
1	
4	
9	

Example: Graph and state the transformation:

a.)
$$y = \sqrt{x}$$
 and $y = \sqrt{x+2} - 1$

b.)
$$y = \sqrt{x}$$
 and $y = -3\sqrt{x}$

c.)
$$y = \sqrt{x}$$
 and $y = \sqrt{2x + 6}$

d.)
$$y = \sqrt{x} \text{ and } y = 3\sqrt{4x - 2} + 1$$

Determine a Radical Function from a Graph:

p 72: 1-7