2.1 Radical Functions and Transformations:

Radical Notation:

\(\sqrt[n]{a} \) is the (principle) \(n \)th root of \(a \).

\(a \) is the **radicand**

\(n \) is the **index** (or order) of the radical

Example: Solve to 3 decimal places

1.) \(x^2 = 4 \)

2.) \(x^5 = -8 \)

3.) \(x^{32} = -4 \)

Graphing Radicals in the form \(y = a\sqrt{b(x - c)} + d \)

Note: Consider the key points of a \(y = \sqrt{x} \) function

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>(\sqrt{1})</td>
</tr>
<tr>
<td>4</td>
<td>(\sqrt{4})</td>
</tr>
<tr>
<td>9</td>
<td>(\sqrt{9})</td>
</tr>
</tbody>
</table>

Example: Graph and state the transformation:

a.) \(y = \sqrt{x} \) and \(y = \sqrt{x + 2} - 1 \)
b. \(y = \sqrt{x} \) and \(y = -3\sqrt{x} \)

c. \(y = \sqrt{x} \) and \(y = \sqrt{2x + 6} \)
d.) $y = \sqrt{x}$ and $y = 3\sqrt{4x - 2} + 1$
Determine a Radical Function from a Graph:

![Graph of a radical function]

p 72: 1-7