10.3 Composite Functions

The composition of $f(x)$ and $g(x)$ is defined as $f(g(x))$ and is formed when $g(x)$ is substituted into $f(x)(\operatorname{or}(f o g)(x))$

Example 1: Evaluate the following

If $f(x)=x^{2}+x \quad$ and $g(x)=5 x$ find
a.) $f(g(3))$
b.) $g(f(-2))$
c.) $f(g(-5))$
d.) $f(g(f(1)))$
e.) $f(g(x))$
f.) $g(f(x))$

Domain of Composite functions

The domain of $f(g(x))$ only exists for those x in the domain of g for which $g(x)$ is in the domain of f.

Example 2: Functions with restrictions

If $f(x)=x^{2}$ and $g(x)=\sqrt{x}$, find
a.) $f(g(x))$
b.) $g(f(x))$

Transformations as a Form of Composite Functions

The transformations from chapter 1 are forms of composite functions: we can replace x and y with different functions and our graph changes relative to the change in our functions.
ie: A horizontal compression by 2 on a function $y=f(x)$ would be written as $y=f(2 x)$

Example 3:

Given the following functions, $y=f(x)$, rewrite the following transformations in the form $y=a f(b(x-h))+k$ then rewrite the equation using compositions.
a.) $y=\sqrt{x}$ is expanded vertically by 2 , expanded horizontally by 3 and translated 3 left
b.) $y=\frac{1}{x}$ is vertically compressed to $\frac{1}{2}$, reflected across the x-axis, moved right 5 and down 3 .
c.) $y=x^{3}-2 x^{2}$ is reflected across the x -axis and translated 3 units right.
d.) $y=\frac{1}{x^{3}}$ is reflected across the y-axis, compressed horizontally to a factor of $\frac{1}{2}$ and expanded vertically by a factor of 5 .
e.) $y=x^{2}+x$ is compressed horizontally to a factor of $\frac{1}{3}$ and shifted 10 units left.
f.) $y=x^{2}+x$ is shifted 10 units left THEN is compressed horizontally to a factor of $\frac{1}{3}$

