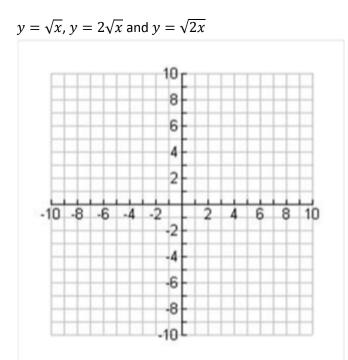

1.2 Reflections and Stretches

Reflections:


Consider and graph the following three functions:

Describe the transformations in each situation. Consider which variable is affected in each situation.

Stretches/Compressions:

Consider and graph the following three functions:

Describe the transformations in each situation. Consider which variable is affected in each situation.

What do you think will happen in the following transformations with respect to y = f(x)?

a.)
$$y = \frac{1}{3}f(x)$$

b.)
$$y = f(\frac{1}{3}x)$$

Summary:

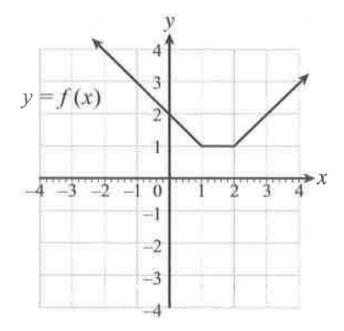
Vertical (affecting the y-values): y = af(x)

- a < 0 (reflection across x-axis)
- |a| > 1 is a vertical expansion
- |a| < 1 is a vertical compression
- Horizontal (affecting the x-values: y = f(bx)
- b < 0 (reflection across y-axis)
- |b| > 1 is a horizontal compression
- |b| < 1 is a horizontal expansion

Example 1:

Given point (3, 6) is in y = f(x).

- i.) What is the new point after the following:
- ii.) Indicate the mapping that has occurred:


a.)
$$y = 3f(x)$$
 b.) $y = f(\frac{1}{2}x)$

c.)
$$y = f\left(\frac{3}{4}x\right)$$
 d.) $y = f(-2x)$

e.)
$$y = -f\left(\frac{3}{2}x\right)$$
 f.) $y = -5f\left(\frac{1}{4}x\right)$

Example 2:

Given the following graph y = f(x).

Describe the transformation of the graph g(x) = 2f(x). Sketch the graph of g(x) and the state the domain and range.