1.1: Horizontal and Vertical Translations

Review: General Graphs:

Quadratic: $y=x^{2}$
Square Root Graphs: $y=\sqrt{x}$

Absolute Value Graphs: $y=|x|$

Reciprocal Graphs: $y=\frac{1}{x}$

Transformations:

A transformation of a function changes the equation and the location/shape/orientation of the graph.

Points on the original graph correspond to new points on the transformed image; the relationship is called mapping.

Example 1:

Consider and graph the following functions:
A.) $y=x^{2}, y=x^{2}+1$ and $y=(x+1)^{2}$
B.) $y=\sqrt{x}, y-2=\sqrt{x}$ and $y=\sqrt{x-2}$
C.) $y=\frac{1}{x^{\prime}} y=\frac{1}{x}-3$ and $y=\frac{1}{x-3}$

What do you notice about each graph?
Translations:
Horizontal translation: $y=f(x-h)$
h > 0 translates right h
$\mathrm{h}<0$ translates left h
Vertical translation: $y-k=f(x)$ OR $y=f(x)+k$
$k>0$ translates up k
$k<0$ translates down k

Example 2:

Graph $y=\sqrt{x}$ and $y=\sqrt{x+3}-2$

Example 3:

Given point $(1,2)$ is in $y=f(x)$.
i. What is the new point after the following translations?
ii. How can you describe the mapping that has taken place?
a.) $y=f(x+3)$
b.) $y-3=f(x)$
c.) $y=f(x)-1$
d.) $y+2=f(x-4)$
e.) $y=f(x+1)-2$

Example 4:

Given the graph of $y=f(x)$, graph $y-1=f(x+2)$

Example 5:

Describe the translation that has been applied to the graph of $f(x)$ to obtain $g(x)$

