1.1 Arithmetic Sequence

A stock boy was stacking cans with in the following sequence. He wanted to stack 10 rows of cans. How many cans will be on the longest row?

Sequence:

A sequence is an ordered list of objects that follow a pattern or rule to determine the next term in the sequence

The number of terms in a sequence is n
The first term of the sequence is t_{1} (term 1).
The second term of the sequence is t_{2}
The general term for any term in the sequence is t_{n}

Arithmetic Sequence

An arithmetic sequence follows the rule where there is a constant common difference between each consecutive terms.

The common difference is given by:
$d=t_{2}-t_{1}$ OR $d=t_{n}-t_{n-1}$

Example 1:

$10,16,22,28, \ldots$ is a sequence that continues infinitely

$$
\begin{aligned}
& t_{1}= \\
& d= \\
& t_{n}=
\end{aligned}
$$

The general term is given by:

$$
t_{n}=t_{1}+(n-1) d
$$

Where t_{1} is the first term
n is the number of terms (or left as n)
d is the common difference
t_{n} is the general term OR nth term of the sequence

Example 2:

Determine a general term for the following sequence:
$12,19,26, \ldots$.
What is the $7^{\text {th }}$ term in the sequence?

Try:
A pizza company sells plain pizzas for $\$ 6$ and charges $\$ 1.50$ for each topping. What general term can be used to determine the price of the pizza given n toppings?

How much does a pizza with 5 toppings cost?

Example 3:

In the following sequence, which term has the value of -67 ?
$43,32,21, \ldots$

Try:

At the end of the first month, a colony of ants has a population of 40 . The population grows by 80 each month. After how many months will the population be 3000 ?

Example 4:

An arithmetic sequence has the third term of 16 , and the $8^{\text {th }}$ term as 6 . What is the common difference and the first term? What is the general form?

Try:

You are given a job of stacking cans. The number of cans in the rows produces an arithmetic sequence. There are 14 cans in the $8^{\text {th }}$ row, and 10 cans in the $12^{\text {th }}$ row. Determine t_{1}, d and t_{n}

